N.C. Harte , D. Obrist , M. Versluis , E. Groot Jebbink , M. Caversaccio , W. Wimmer , G. Lajoinie
{"title":"通过毫米管道中的三维粒子图像测速仪实现二阶和横向流动可视化","authors":"N.C. Harte , D. Obrist , M. Versluis , E. Groot Jebbink , M. Caversaccio , W. Wimmer , G. Lajoinie","doi":"10.1016/j.expthermflusci.2024.111296","DOIUrl":null,"url":null,"abstract":"<div><p>Despite recent advances in 3D particle image velocimetry (PIV), challenges remain in measuring small-scale 3D flows, in particular flows with large dynamic range. This study presents a scanning 3D-PIV system tailored for oscillatory flows, capable of resolving transverse flows less than a percent of the axial flow amplitude. The system was applied to visualize transverse flows in millimetric straight, toroidal, and twisted ducts. Two PIV analysis techniques, stroboscopic and semi-Lagrangian PIV, enable the quantification of net motion as well as time-resolved axial and transverse velocities. The experimental results closely align with computational fluid dynamics (CFD) simulations performed in a digitized representation of the experimental model. The proposed method allows the examination of periodic flows in systems down to microscopic scale and is particularly well-suited for applications that cannot be scaled up due to their complex, multi-physics nature.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724001651/pdfft?md5=17274ce3749be2d96bb952e13bb9566d&pid=1-s2.0-S0894177724001651-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Second order and transverse flow visualization through three-dimensional particle image velocimetry in millimetric ducts\",\"authors\":\"N.C. Harte , D. Obrist , M. Versluis , E. Groot Jebbink , M. Caversaccio , W. Wimmer , G. Lajoinie\",\"doi\":\"10.1016/j.expthermflusci.2024.111296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite recent advances in 3D particle image velocimetry (PIV), challenges remain in measuring small-scale 3D flows, in particular flows with large dynamic range. This study presents a scanning 3D-PIV system tailored for oscillatory flows, capable of resolving transverse flows less than a percent of the axial flow amplitude. The system was applied to visualize transverse flows in millimetric straight, toroidal, and twisted ducts. Two PIV analysis techniques, stroboscopic and semi-Lagrangian PIV, enable the quantification of net motion as well as time-resolved axial and transverse velocities. The experimental results closely align with computational fluid dynamics (CFD) simulations performed in a digitized representation of the experimental model. The proposed method allows the examination of periodic flows in systems down to microscopic scale and is particularly well-suited for applications that cannot be scaled up due to their complex, multi-physics nature.</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001651/pdfft?md5=17274ce3749be2d96bb952e13bb9566d&pid=1-s2.0-S0894177724001651-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001651\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001651","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Second order and transverse flow visualization through three-dimensional particle image velocimetry in millimetric ducts
Despite recent advances in 3D particle image velocimetry (PIV), challenges remain in measuring small-scale 3D flows, in particular flows with large dynamic range. This study presents a scanning 3D-PIV system tailored for oscillatory flows, capable of resolving transverse flows less than a percent of the axial flow amplitude. The system was applied to visualize transverse flows in millimetric straight, toroidal, and twisted ducts. Two PIV analysis techniques, stroboscopic and semi-Lagrangian PIV, enable the quantification of net motion as well as time-resolved axial and transverse velocities. The experimental results closely align with computational fluid dynamics (CFD) simulations performed in a digitized representation of the experimental model. The proposed method allows the examination of periodic flows in systems down to microscopic scale and is particularly well-suited for applications that cannot be scaled up due to their complex, multi-physics nature.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.