以 H2 为主的系外行星透射光谱的时间变化:热演化和恒星辐照对大气成分的影响

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Viktória Kecskeméthy , Amy Louca , Yamila Miguel
{"title":"以 H2 为主的系外行星透射光谱的时间变化:热演化和恒星辐照对大气成分的影响","authors":"Viktória Kecskeméthy ,&nbsp;Amy Louca ,&nbsp;Yamila Miguel","doi":"10.1016/j.newast.2024.102296","DOIUrl":null,"url":null,"abstract":"<div><p>Planets and their host stars undergo evolutionary changes over time, resulting in variations in internal temperature and incoming radiation, which significantly impact the temperature structure and composition of their atmospheres. These evolving conditions give rise to distinctive features in planetary spectra that are observable only during specific stages of planetary evolution. We aim to understand how the composition of planets with H<sub>2</sub>-dominated atmospheres changes over longer timescales due to their thermal evolution. We also investigate time-dependent features in the transmission spectra. These features could provide insights in both the formation and evolution of these gaseous planets, as well as the timescales of these changes, enabling us to study the potential variability of exoplanets over time. We evolve a <span><math><mo>∼</mo></math></span>0.04 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> and <span><math><mo>∼</mo></math></span>0.45 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> planet around a 1.0 M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and 1.3 M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> star respectively for 10<span><math><msup><mrow></mrow><mrow><mn>9</mn><mo>.</mo><mn>5</mn></mrow></msup></math></span> years. In both systems, the planets are considered at semi-major axes of 0.1 AU and 1.0 AU. The star-planet systems are evolved by making use of Modules for Experiments in Stellar Astrophysics (MESA). The temperature–pressure profiles are obtained at selected time-steps using an analytical approximation based on the internal and irradiation temperature of the planet at each time step. We then use VULCAN, a photochemical kinetics code, to see how the composition changes with time in the atmosphere due to the thermal evolution of the planets. By making use of the radiative transfer code petitRADTrans, we also simulate the evolution of the transmission spectra of the planets to find potential time-dependent spectral features. Our findings show a prominent change in the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> feature at <span><math><mrow><mo>∼</mo><mn>4</mn><mo>.</mo><mn>3</mn><mi>μ</mi><mi>m</mi></mrow></math></span>. For the 0.45 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> case, this feature is visible in the pre-main-sequence phase of the host star, regardless of orbital distance from the host star. In the case of the <span><math><mo>∼</mo></math></span>0.04 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> planet, this CO<sub>2</sub> feature is visible until t <span><math><mo>≤</mo></math></span> 10<sup>6</sup> years, and then it reappears after t <span><math><mo>≥</mo></math></span> 10<sup>8</sup> years when the planet is 0.1 AU away the host star. The CH<sub>4</sub> features at <span><math><mrow><mo>∼</mo><mn>3</mn><mo>.</mo><mn>3</mn><mi>μ</mi><mi>m</mi></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>7</mn><mo>.</mo><mn>5</mn><mi>μ</mi><mi>m</mi></mrow></math></span> are only time-dependent when the planet is located at 0.1 AU from the host star and experiences high irradiation since the high temperature at early stages favoured CO<sub>2</sub> over CH<sub>4</sub>. When the planet is 1.0 AU away from its host star, the CH<sub>4</sub> features are always visible regardless of the mass and hence internal temperature of the planet.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"113 ","pages":"Article 102296"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1384107624001106/pdfft?md5=d658e35eb5e86085855c30c9d7f75b81&pid=1-s2.0-S1384107624001106-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Temporal variability in transmission spectra of H2-dominated exoplanets: The influence of thermal evolution and stellar irradiation on atmospheric composition\",\"authors\":\"Viktória Kecskeméthy ,&nbsp;Amy Louca ,&nbsp;Yamila Miguel\",\"doi\":\"10.1016/j.newast.2024.102296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Planets and their host stars undergo evolutionary changes over time, resulting in variations in internal temperature and incoming radiation, which significantly impact the temperature structure and composition of their atmospheres. These evolving conditions give rise to distinctive features in planetary spectra that are observable only during specific stages of planetary evolution. We aim to understand how the composition of planets with H<sub>2</sub>-dominated atmospheres changes over longer timescales due to their thermal evolution. We also investigate time-dependent features in the transmission spectra. These features could provide insights in both the formation and evolution of these gaseous planets, as well as the timescales of these changes, enabling us to study the potential variability of exoplanets over time. We evolve a <span><math><mo>∼</mo></math></span>0.04 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> and <span><math><mo>∼</mo></math></span>0.45 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> planet around a 1.0 M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and 1.3 M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> star respectively for 10<span><math><msup><mrow></mrow><mrow><mn>9</mn><mo>.</mo><mn>5</mn></mrow></msup></math></span> years. In both systems, the planets are considered at semi-major axes of 0.1 AU and 1.0 AU. The star-planet systems are evolved by making use of Modules for Experiments in Stellar Astrophysics (MESA). The temperature–pressure profiles are obtained at selected time-steps using an analytical approximation based on the internal and irradiation temperature of the planet at each time step. We then use VULCAN, a photochemical kinetics code, to see how the composition changes with time in the atmosphere due to the thermal evolution of the planets. By making use of the radiative transfer code petitRADTrans, we also simulate the evolution of the transmission spectra of the planets to find potential time-dependent spectral features. Our findings show a prominent change in the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> feature at <span><math><mrow><mo>∼</mo><mn>4</mn><mo>.</mo><mn>3</mn><mi>μ</mi><mi>m</mi></mrow></math></span>. For the 0.45 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> case, this feature is visible in the pre-main-sequence phase of the host star, regardless of orbital distance from the host star. In the case of the <span><math><mo>∼</mo></math></span>0.04 M<span><math><msub><mrow></mrow><mrow><mi>Jup</mi></mrow></msub></math></span> planet, this CO<sub>2</sub> feature is visible until t <span><math><mo>≤</mo></math></span> 10<sup>6</sup> years, and then it reappears after t <span><math><mo>≥</mo></math></span> 10<sup>8</sup> years when the planet is 0.1 AU away the host star. The CH<sub>4</sub> features at <span><math><mrow><mo>∼</mo><mn>3</mn><mo>.</mo><mn>3</mn><mi>μ</mi><mi>m</mi></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>7</mn><mo>.</mo><mn>5</mn><mi>μ</mi><mi>m</mi></mrow></math></span> are only time-dependent when the planet is located at 0.1 AU from the host star and experiences high irradiation since the high temperature at early stages favoured CO<sub>2</sub> over CH<sub>4</sub>. When the planet is 1.0 AU away from its host star, the CH<sub>4</sub> features are always visible regardless of the mass and hence internal temperature of the planet.</p></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"113 \",\"pages\":\"Article 102296\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1384107624001106/pdfft?md5=d658e35eb5e86085855c30c9d7f75b81&pid=1-s2.0-S1384107624001106-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624001106\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624001106","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

行星及其宿主恒星会随着时间的推移而发生演化变化,导致内部温度和入射辐射的变化,从而对其大气层的温度结构和成分产生重大影响。这些不断变化的条件导致行星光谱中出现了只有在行星演化的特定阶段才能观测到的独特特征。我们的目标是了解以 H2 为主的行星大气成分如何因其热演化而在更长的时间尺度上发生变化。我们还研究了透射光谱中随时间变化的特征。这些特征可以让我们了解这些气态行星的形成和演化,以及这些变化的时间尺度,从而研究系外行星随时间的潜在变化。我们分别围绕一颗1.0 M⊙恒星和一颗1.3 M⊙恒星演化了一颗∼0.04 MJup和一颗∼0.45 MJup行星,历时109.5年。在这两个系统中,行星的半主轴分别为 0.1 AU 和 1.0 AU。恒星-行星系统是利用恒星天体物理学实验模块(MESA)演化而成的。在选定的时间步长内,根据行星在每个时间步长内的内部温度和辐照温度,使用分析近似方法获得温度-压力剖面。然后,我们使用光化学动力学代码 VULCAN 来观察由于行星的热演化,大气中的成分如何随时间发生变化。通过使用辐射传递代码 petitRADTrans,我们还模拟了行星透射光谱的演变,以发现潜在的随时间变化的光谱特征。我们的研究结果表明,在 ∼4.3μm 处的 CO2 特征发生了显著变化。在 0.45 MJup 的情况下,无论与主星的轨道距离如何,这一特征在主星的前主序阶段都是可见的。在 ∼0.04 MJup 行星的情况下,这一 CO2 特征在 t≤106 年之前是可见的,然后在 t≥108 年之后,当行星距离宿主恒星 0.1 AU 时再次出现。由于早期的高温有利于 CO2 而非 CH4,因此只有当行星距离主恒星 0.1 AU 并经历高辐照时,CH4 在 ∼3.3μm 和 ∼7.5μm 处的特征才与时间有关。当行星距离其主恒星1.0 AU时,无论行星的质量和内部温度如何,CH4特征总是可见的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal variability in transmission spectra of H2-dominated exoplanets: The influence of thermal evolution and stellar irradiation on atmospheric composition

Planets and their host stars undergo evolutionary changes over time, resulting in variations in internal temperature and incoming radiation, which significantly impact the temperature structure and composition of their atmospheres. These evolving conditions give rise to distinctive features in planetary spectra that are observable only during specific stages of planetary evolution. We aim to understand how the composition of planets with H2-dominated atmospheres changes over longer timescales due to their thermal evolution. We also investigate time-dependent features in the transmission spectra. These features could provide insights in both the formation and evolution of these gaseous planets, as well as the timescales of these changes, enabling us to study the potential variability of exoplanets over time. We evolve a 0.04 MJup and 0.45 MJup planet around a 1.0 M and 1.3 M star respectively for 109.5 years. In both systems, the planets are considered at semi-major axes of 0.1 AU and 1.0 AU. The star-planet systems are evolved by making use of Modules for Experiments in Stellar Astrophysics (MESA). The temperature–pressure profiles are obtained at selected time-steps using an analytical approximation based on the internal and irradiation temperature of the planet at each time step. We then use VULCAN, a photochemical kinetics code, to see how the composition changes with time in the atmosphere due to the thermal evolution of the planets. By making use of the radiative transfer code petitRADTrans, we also simulate the evolution of the transmission spectra of the planets to find potential time-dependent spectral features. Our findings show a prominent change in the CO2 feature at 4.3μm. For the 0.45 MJup case, this feature is visible in the pre-main-sequence phase of the host star, regardless of orbital distance from the host star. In the case of the 0.04 MJup planet, this CO2 feature is visible until t 106 years, and then it reappears after t 108 years when the planet is 0.1 AU away the host star. The CH4 features at 3.3μm and 7.5μm are only time-dependent when the planet is located at 0.1 AU from the host star and experiences high irradiation since the high temperature at early stages favoured CO2 over CH4. When the planet is 1.0 AU away from its host star, the CH4 features are always visible regardless of the mass and hence internal temperature of the planet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信