声学紧凑孔口的非线性动力学

IF 4.3 2区 工程技术 Q1 ACOUSTICS
{"title":"声学紧凑孔口的非线性动力学","authors":"","doi":"10.1016/j.jsv.2024.118660","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a three dimensional, reduced order model of the dynamics of an acoustically compact aperture, subject to an arbitrary pressure forcing. It provides the time evolution of the velocity profile across the orifice section as function of the dynamical pressure excitation. The volume flow can be deduced therefrom, and can thus provide predictions of the fundamental frequency based orifice impedance. The representation of the nonlinear aperture flow proposed here establishes a direct mathematical relation to the fundamental equations of fluid mechanics. This offers a better understanding of the dominant physical mechanisms governing the system‘s dynamics and allows for good <em>a priori</em> estimates without supporting experiments. The model assumes that the viscosity induced rotational component of the fluid motion can be reduced to a discontinuity at the in-flow plane of the thin orifice, without significantly influencing the normal velocity profile. This seemingly unconventional assumption is solely targeting the acoustics problem and is validated with direct numerical simulations (DNS) of the aperture flow, using a compressible solver of the Navier–Stokes equations. Apart from the DNS, the model predictions are also validated against well established experimental results from the literature.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022460X2400422X/pdfft?md5=bc2d493c2360ed83f40af68872b74264&pid=1-s2.0-S0022460X2400422X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics of an acoustically compact orifice\",\"authors\":\"\",\"doi\":\"10.1016/j.jsv.2024.118660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a three dimensional, reduced order model of the dynamics of an acoustically compact aperture, subject to an arbitrary pressure forcing. It provides the time evolution of the velocity profile across the orifice section as function of the dynamical pressure excitation. The volume flow can be deduced therefrom, and can thus provide predictions of the fundamental frequency based orifice impedance. The representation of the nonlinear aperture flow proposed here establishes a direct mathematical relation to the fundamental equations of fluid mechanics. This offers a better understanding of the dominant physical mechanisms governing the system‘s dynamics and allows for good <em>a priori</em> estimates without supporting experiments. The model assumes that the viscosity induced rotational component of the fluid motion can be reduced to a discontinuity at the in-flow plane of the thin orifice, without significantly influencing the normal velocity profile. This seemingly unconventional assumption is solely targeting the acoustics problem and is validated with direct numerical simulations (DNS) of the aperture flow, using a compressible solver of the Navier–Stokes equations. Apart from the DNS, the model predictions are also validated against well established experimental results from the literature.</p></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022460X2400422X/pdfft?md5=bc2d493c2360ed83f40af68872b74264&pid=1-s2.0-S0022460X2400422X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X2400422X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X2400422X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一个受任意压力激励的声学紧凑孔道的三维减阶动力学模型。它提供了孔口截面速度剖面随动态压力激励的时间演变。由此可以推导出体积流,从而可以预测基于基频的孔口阻抗。此处提出的非线性孔口流表示法与流体力学基本方程建立了直接的数学关系。这样就能更好地理解支配系统动力学的主要物理机制,并在没有实验支持的情况下进行良好的先验估计。该模型假定,流体运动中由粘度引起的旋转分量可以在细孔的内流平面处减小到不连续,而不会对法线速度曲线产生显著影响。这一看似非常规的假设仅针对声学问题,并通过使用纳维-斯托克斯方程的可压缩求解器对孔口流进行直接数值模拟(DNS)进行了验证。除了 DNS 之外,模型预测还与文献中的成熟实验结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear dynamics of an acoustically compact orifice

This work presents a three dimensional, reduced order model of the dynamics of an acoustically compact aperture, subject to an arbitrary pressure forcing. It provides the time evolution of the velocity profile across the orifice section as function of the dynamical pressure excitation. The volume flow can be deduced therefrom, and can thus provide predictions of the fundamental frequency based orifice impedance. The representation of the nonlinear aperture flow proposed here establishes a direct mathematical relation to the fundamental equations of fluid mechanics. This offers a better understanding of the dominant physical mechanisms governing the system‘s dynamics and allows for good a priori estimates without supporting experiments. The model assumes that the viscosity induced rotational component of the fluid motion can be reduced to a discontinuity at the in-flow plane of the thin orifice, without significantly influencing the normal velocity profile. This seemingly unconventional assumption is solely targeting the acoustics problem and is validated with direct numerical simulations (DNS) of the aperture flow, using a compressible solver of the Navier–Stokes equations. Apart from the DNS, the model predictions are also validated against well established experimental results from the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信