探索影响者动态和网络复原力:深入研究推特自我网络中与科学相关的子图谱

Meihong Zhu
{"title":"探索影响者动态和网络复原力:深入研究推特自我网络中与科学相关的子图谱","authors":"Meihong Zhu","doi":"10.1016/j.procs.2024.08.236","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an in-depth analysis of a Twitter ego network, focusing on the scientific community. Utilizing relative network analysis techniques, the study explores community structures, influencer dynamics, and network resilience. Key methodologies include community detection, centrality analysis, predictive modeling for link prediction and influence propagation, as well as resilience analysis. Results show distinct community formations, influential nodes, varying network resilience to disruptions. This comprehensive analysis provides valuable insights into the complex dynamics of scientific discourse on social media, emphasizing the importance of influential nodes and community structures in maintaining network integrity and facilitating information flow. This study will provide theoretical, methodological, and framework references for other social network analysis.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"242 ","pages":"Pages 280-287"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924019550/pdf?md5=2b574fed997e4b517ccdd87c30daf5b9&pid=1-s2.0-S1877050924019550-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring Influencer Dynamics and Network Resilience: A Deep Dive into Science-Related Subgraph of Twitter Ego Networks\",\"authors\":\"Meihong Zhu\",\"doi\":\"10.1016/j.procs.2024.08.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an in-depth analysis of a Twitter ego network, focusing on the scientific community. Utilizing relative network analysis techniques, the study explores community structures, influencer dynamics, and network resilience. Key methodologies include community detection, centrality analysis, predictive modeling for link prediction and influence propagation, as well as resilience analysis. Results show distinct community formations, influential nodes, varying network resilience to disruptions. This comprehensive analysis provides valuable insights into the complex dynamics of scientific discourse on social media, emphasizing the importance of influential nodes and community structures in maintaining network integrity and facilitating information flow. This study will provide theoretical, methodological, and framework references for other social network analysis.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"242 \",\"pages\":\"Pages 280-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877050924019550/pdf?md5=2b574fed997e4b517ccdd87c30daf5b9&pid=1-s2.0-S1877050924019550-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924019550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924019550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对推特自我网络进行了深入分析,重点关注科学界。研究利用相对网络分析技术,探讨了社区结构、影响者动态和网络弹性。主要方法包括社区检测、中心性分析、链接预测和影响力传播的预测建模以及弹性分析。结果显示了不同的社区形态、有影响力的节点以及不同的网络抗干扰能力。这项综合分析为了解社交媒体上科学话语的复杂动态提供了宝贵的见解,强调了有影响力的节点和社区结构在维护网络完整性和促进信息流方面的重要性。这项研究将为其他社交网络分析提供理论、方法和框架参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Influencer Dynamics and Network Resilience: A Deep Dive into Science-Related Subgraph of Twitter Ego Networks

This paper presents an in-depth analysis of a Twitter ego network, focusing on the scientific community. Utilizing relative network analysis techniques, the study explores community structures, influencer dynamics, and network resilience. Key methodologies include community detection, centrality analysis, predictive modeling for link prediction and influence propagation, as well as resilience analysis. Results show distinct community formations, influential nodes, varying network resilience to disruptions. This comprehensive analysis provides valuable insights into the complex dynamics of scientific discourse on social media, emphasizing the importance of influential nodes and community structures in maintaining network integrity and facilitating information flow. This study will provide theoretical, methodological, and framework references for other social network analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信