BEVEFNet:基于激光雷达与相机融合的多目标跟踪模型

Yi Yuan , Ying Liu
{"title":"BEVEFNet:基于激光雷达与相机融合的多目标跟踪模型","authors":"Yi Yuan ,&nbsp;Ying Liu","doi":"10.1016/j.procs.2024.08.106","DOIUrl":null,"url":null,"abstract":"<div><p>As a crucial task in the field of computer vision, object tracking models are widely used in various application domains, such as autonomous driving. However, existing multiple object tracking methods still face challenges in accurately and efficiently tracking moving multi-targets in real time. This paper presents BEVEFNet, a camera-LiDAR multi-target tracking model based on multistage fusion, which effectively utilizes the semantic information from optical images and the spatial and geometric information from LiDAR data to unify multi-modal features in a shared Bird’s Eye View(BEV) representation space. By leveraging LiDAR data to complement optical images, multi-level fusion is achieved at both the feature and decision levels. The proposed efficient sparse 3D feature extraction network significantly enhances the speed of multiple object tracking by incorporating sparse convolution. Experiments conducted on the nuSences dataset demonstrate that BEVEFNet achieves an AMOTA of 69.7, improving the accuracy of multiple object tracking.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"242 ","pages":"Pages 560-567"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924018258/pdf?md5=7a04b4b2bac5a8561eb27e503466319f&pid=1-s2.0-S1877050924018258-main.pdf","citationCount":"0","resultStr":"{\"title\":\"BEVEFNet: A Multiple Object Tracking Model Based on LiDAR-Camera Fusion\",\"authors\":\"Yi Yuan ,&nbsp;Ying Liu\",\"doi\":\"10.1016/j.procs.2024.08.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a crucial task in the field of computer vision, object tracking models are widely used in various application domains, such as autonomous driving. However, existing multiple object tracking methods still face challenges in accurately and efficiently tracking moving multi-targets in real time. This paper presents BEVEFNet, a camera-LiDAR multi-target tracking model based on multistage fusion, which effectively utilizes the semantic information from optical images and the spatial and geometric information from LiDAR data to unify multi-modal features in a shared Bird’s Eye View(BEV) representation space. By leveraging LiDAR data to complement optical images, multi-level fusion is achieved at both the feature and decision levels. The proposed efficient sparse 3D feature extraction network significantly enhances the speed of multiple object tracking by incorporating sparse convolution. Experiments conducted on the nuSences dataset demonstrate that BEVEFNet achieves an AMOTA of 69.7, improving the accuracy of multiple object tracking.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"242 \",\"pages\":\"Pages 560-567\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877050924018258/pdf?md5=7a04b4b2bac5a8561eb27e503466319f&pid=1-s2.0-S1877050924018258-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924018258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924018258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为计算机视觉领域的一项重要任务,物体跟踪模型被广泛应用于自动驾驶等多个应用领域。然而,现有的多目标跟踪方法在准确、高效地实时跟踪移动的多目标方面仍面临挑战。本文提出的 BEVEFNet 是一种基于多级融合的相机-激光雷达多目标跟踪模型,它有效地利用了光学图像的语义信息和激光雷达数据的空间与几何信息,将多模态特征统一在一个共享的鸟瞰图(BEV)表示空间中。通过利用激光雷达数据对光学图像进行补充,在特征和决策层面实现了多级融合。通过结合稀疏卷积,所提出的高效稀疏三维特征提取网络大大提高了多目标跟踪的速度。在 nuSences 数据集上进行的实验表明,BEVEFNet 的 AMOTA 值达到了 69.7,提高了多目标跟踪的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BEVEFNet: A Multiple Object Tracking Model Based on LiDAR-Camera Fusion

As a crucial task in the field of computer vision, object tracking models are widely used in various application domains, such as autonomous driving. However, existing multiple object tracking methods still face challenges in accurately and efficiently tracking moving multi-targets in real time. This paper presents BEVEFNet, a camera-LiDAR multi-target tracking model based on multistage fusion, which effectively utilizes the semantic information from optical images and the spatial and geometric information from LiDAR data to unify multi-modal features in a shared Bird’s Eye View(BEV) representation space. By leveraging LiDAR data to complement optical images, multi-level fusion is achieved at both the feature and decision levels. The proposed efficient sparse 3D feature extraction network significantly enhances the speed of multiple object tracking by incorporating sparse convolution. Experiments conducted on the nuSences dataset demonstrate that BEVEFNet achieves an AMOTA of 69.7, improving the accuracy of multiple object tracking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信