{"title":"人工智能识别的线粒体表型有助于确定药物靶点。","authors":"","doi":"10.1038/s43588-024-00682-9","DOIUrl":null,"url":null,"abstract":"Revealing a drug’s mechanism of action (MOA) is costly and time-consuming. In this study, we used deep learning to extract temporal mitochondrial phenotypic features after exposure to drugs with known MOAs using re-identification algorithms. The trained model could then predict the MOAs of unidentified substances, facilitating phenotypic screening-based drug discovery and repurposing.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"563-564"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-recognized mitochondrial phenotype enables identification of drug targets\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00682-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Revealing a drug’s mechanism of action (MOA) is costly and time-consuming. In this study, we used deep learning to extract temporal mitochondrial phenotypic features after exposure to drugs with known MOAs using re-identification algorithms. The trained model could then predict the MOAs of unidentified substances, facilitating phenotypic screening-based drug discovery and repurposing.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 8\",\"pages\":\"563-564\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00682-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00682-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
AI-recognized mitochondrial phenotype enables identification of drug targets
Revealing a drug’s mechanism of action (MOA) is costly and time-consuming. In this study, we used deep learning to extract temporal mitochondrial phenotypic features after exposure to drugs with known MOAs using re-identification algorithms. The trained model could then predict the MOAs of unidentified substances, facilitating phenotypic screening-based drug discovery and repurposing.