{"title":"HNRNPA2B1 可诱导细胞增殖并作为乳腺癌的生物标志物。","authors":"Yi Yang, Yi Zhang, Tongbao Feng, Chunfu Zhu","doi":"10.3233/CBM-230576","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Numerous studies have shown that m6A plays an important regulatory role in the development of tumors. HNRNPA2B1, one of the m6A RNA methylation reading proteins, has been proven to be elevated in human cancers.</p><p><strong>Objective: </strong>In this study, we aimed to identify the role of HNRNPA2B1 in breast cancer.</p><p><strong>Methods: </strong>HNRNPA2B1 expression was investigated via RT-qPCR and TCGA database in breast cancer. Then, the function of HNRNPA2B1 on cancer cell was measured by CCK8 assays, colony formation and scratch assays. In addition, HNRNPA2B1 expression in BRCA was explored via the Wilcoxon signed-rank test, KruskalWallis test and logistic regression. The association with HNRNPA2B1 expression and survival were considered by KaplanMeier and Cox regression analyses. The biological function of HNRNPA2B1 was analyzed via gene set enrichment analysis (GSEA) and the cluster Profiler R software package.</p><p><strong>Results: </strong>We found that HNRNPA2B1 was highly expressed and induced cell proliferation and migration in breast cancer. Moreover, we observed HNRNPA2B1 induced tumor growth in vivo. In addition, we also found HNRNPA2B1 expression was associated with characteristics and prognosis in breast cancer patients.</p><p><strong>Conclusion: </strong>Our findings suggested that HNRNPA2B1 promoted tumor growth and could function as a new potential molecular marker in breast cancer.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380248/pdf/","citationCount":"0","resultStr":"{\"title\":\"HNRNPA2B1 induces cell proliferation and acts as biomarker in breast cancer.\",\"authors\":\"Yi Yang, Yi Zhang, Tongbao Feng, Chunfu Zhu\",\"doi\":\"10.3233/CBM-230576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Numerous studies have shown that m6A plays an important regulatory role in the development of tumors. HNRNPA2B1, one of the m6A RNA methylation reading proteins, has been proven to be elevated in human cancers.</p><p><strong>Objective: </strong>In this study, we aimed to identify the role of HNRNPA2B1 in breast cancer.</p><p><strong>Methods: </strong>HNRNPA2B1 expression was investigated via RT-qPCR and TCGA database in breast cancer. Then, the function of HNRNPA2B1 on cancer cell was measured by CCK8 assays, colony formation and scratch assays. In addition, HNRNPA2B1 expression in BRCA was explored via the Wilcoxon signed-rank test, KruskalWallis test and logistic regression. The association with HNRNPA2B1 expression and survival were considered by KaplanMeier and Cox regression analyses. The biological function of HNRNPA2B1 was analyzed via gene set enrichment analysis (GSEA) and the cluster Profiler R software package.</p><p><strong>Results: </strong>We found that HNRNPA2B1 was highly expressed and induced cell proliferation and migration in breast cancer. Moreover, we observed HNRNPA2B1 induced tumor growth in vivo. In addition, we also found HNRNPA2B1 expression was associated with characteristics and prognosis in breast cancer patients.</p><p><strong>Conclusion: </strong>Our findings suggested that HNRNPA2B1 promoted tumor growth and could function as a new potential molecular marker in breast cancer.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CBM-230576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CBM-230576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
HNRNPA2B1 induces cell proliferation and acts as biomarker in breast cancer.
Background: Numerous studies have shown that m6A plays an important regulatory role in the development of tumors. HNRNPA2B1, one of the m6A RNA methylation reading proteins, has been proven to be elevated in human cancers.
Objective: In this study, we aimed to identify the role of HNRNPA2B1 in breast cancer.
Methods: HNRNPA2B1 expression was investigated via RT-qPCR and TCGA database in breast cancer. Then, the function of HNRNPA2B1 on cancer cell was measured by CCK8 assays, colony formation and scratch assays. In addition, HNRNPA2B1 expression in BRCA was explored via the Wilcoxon signed-rank test, KruskalWallis test and logistic regression. The association with HNRNPA2B1 expression and survival were considered by KaplanMeier and Cox regression analyses. The biological function of HNRNPA2B1 was analyzed via gene set enrichment analysis (GSEA) and the cluster Profiler R software package.
Results: We found that HNRNPA2B1 was highly expressed and induced cell proliferation and migration in breast cancer. Moreover, we observed HNRNPA2B1 induced tumor growth in vivo. In addition, we also found HNRNPA2B1 expression was associated with characteristics and prognosis in breast cancer patients.
Conclusion: Our findings suggested that HNRNPA2B1 promoted tumor growth and could function as a new potential molecular marker in breast cancer.