Christo El Morr, Deniz Ozdemir, Yasmeen Asdaah, Antoine Saab, Yahya El-Lahib, Elie Salem Sokhn
{"title":"基于人工智能的流行病和大流行病预警系统:系统性范围审查。","authors":"Christo El Morr, Deniz Ozdemir, Yasmeen Asdaah, Antoine Saab, Yahya El-Lahib, Elie Salem Sokhn","doi":"10.1177/14604582241275844","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). <b>Objective:</b> To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. <b>Methods:</b> A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. <b>Results:</b> The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. <b>Conclusion:</b> AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"30 3","pages":"14604582241275844"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based epidemic and pandemic early warning systems: A systematic scoping review.\",\"authors\":\"Christo El Morr, Deniz Ozdemir, Yasmeen Asdaah, Antoine Saab, Yahya El-Lahib, Elie Salem Sokhn\",\"doi\":\"10.1177/14604582241275844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). <b>Objective:</b> To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. <b>Methods:</b> A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. <b>Results:</b> The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. <b>Conclusion:</b> AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.</p>\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":\"30 3\",\"pages\":\"14604582241275844\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582241275844\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14604582241275844","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
AI-based epidemic and pandemic early warning systems: A systematic scoping review.
Background: Timely detection of disease outbreaks is critical in public health. Artificial Intelligence (AI) can identify patterns in data that signal the onset of epidemics and pandemics. This scoping review examines the effectiveness of AI in epidemic and pandemic early warning systems (EWS). Objective: To assess the capability of AI-based systems in predicting epidemics and pandemics and to identify challenges and strategies for improvement. Methods: A systematic scoping review was conducted. The review included studies from the last 5 years, focusing on AI and machine learning applications in EWS. After screening 1087 articles, 33 were selected for thematic analysis. Results: The review found that AI-based EWS have been effectively implemented in various contexts, using a range of algorithms. Key challenges identified include data quality, model explainability, bias, data volume, velocity, variety, availability, and granularity. Strategies for mitigating AI bias and improving system adaptability were also discussed. Conclusion: AI has shown promise in enhancing the speed and accuracy of epidemic detection. However, challenges related to data quality, bias, and model transparency need to be addressed to improve the reliability and generalizability of AI-based EWS. Continuous monitoring and improvement, as well as incorporating social and environmental data, are essential for future development.
期刊介绍:
Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.