Stacey Marden, John M Campbell, Neal Adams, Ronan Coelho, Chris Foti, Juçara Ribeiro Franca, Steven Hostyn, Zongyun Huang, Mariah Ultramari, Todd Zelesky, Steven W Baertschi
{"title":"药物压力测试中的质量平衡:原理与实际应用综述。","authors":"Stacey Marden, John M Campbell, Neal Adams, Ronan Coelho, Chris Foti, Juçara Ribeiro Franca, Steven Hostyn, Zongyun Huang, Mariah Ultramari, Todd Zelesky, Steven W Baertschi","doi":"10.1208/s12248-024-00961-3","DOIUrl":null,"url":null,"abstract":"<p><p>Stress testing (also known as forced degradation) of pharmaceutical drug substances and products is a critical part of the drug development process, providing insight into the degradation pathways of drug substances and drug products. This information is used to support the development of stability-indicating methods (SIMs) capable of detecting pharmaceutically relevant degradation products that might potentially be observed during manufacturing, long-term storage, distribution, and use. Assessing mass balance of stressed samples is a key aspect of developing SIMs and is a regulatory expectation. However, the approaches to measure, calculate, and interpret mass balance can vary among different pharmaceutical companies. Such disparities also pose difficulties for health authorities when reviewing mass balance assessments, which may result in the potential delay of drug application approvals. The authors have gathered input from 10 pharma companies to map out a practical review of science-based approaches and technical details to assess and interpret mass balance results. Key concepts of mass balance are introduced, various mass balance calculations are demonstrated, and recommendations on how to investigate poor mass balance results are presented using real-world case studies. Herein we provide a single source reference on the topic of mass balance in pharmaceutical forced degradation for small molecule drug substances and drug products in support of regulatory submissions with the goal of facilitating a shared understanding among pharmaceutical scientists and health authorities.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass Balance in Pharmaceutical Stress Testing: A Review of Principles and Practical Applications.\",\"authors\":\"Stacey Marden, John M Campbell, Neal Adams, Ronan Coelho, Chris Foti, Juçara Ribeiro Franca, Steven Hostyn, Zongyun Huang, Mariah Ultramari, Todd Zelesky, Steven W Baertschi\",\"doi\":\"10.1208/s12248-024-00961-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stress testing (also known as forced degradation) of pharmaceutical drug substances and products is a critical part of the drug development process, providing insight into the degradation pathways of drug substances and drug products. This information is used to support the development of stability-indicating methods (SIMs) capable of detecting pharmaceutically relevant degradation products that might potentially be observed during manufacturing, long-term storage, distribution, and use. Assessing mass balance of stressed samples is a key aspect of developing SIMs and is a regulatory expectation. However, the approaches to measure, calculate, and interpret mass balance can vary among different pharmaceutical companies. Such disparities also pose difficulties for health authorities when reviewing mass balance assessments, which may result in the potential delay of drug application approvals. The authors have gathered input from 10 pharma companies to map out a practical review of science-based approaches and technical details to assess and interpret mass balance results. Key concepts of mass balance are introduced, various mass balance calculations are demonstrated, and recommendations on how to investigate poor mass balance results are presented using real-world case studies. Herein we provide a single source reference on the topic of mass balance in pharmaceutical forced degradation for small molecule drug substances and drug products in support of regulatory submissions with the goal of facilitating a shared understanding among pharmaceutical scientists and health authorities.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-024-00961-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-024-00961-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Mass Balance in Pharmaceutical Stress Testing: A Review of Principles and Practical Applications.
Stress testing (also known as forced degradation) of pharmaceutical drug substances and products is a critical part of the drug development process, providing insight into the degradation pathways of drug substances and drug products. This information is used to support the development of stability-indicating methods (SIMs) capable of detecting pharmaceutically relevant degradation products that might potentially be observed during manufacturing, long-term storage, distribution, and use. Assessing mass balance of stressed samples is a key aspect of developing SIMs and is a regulatory expectation. However, the approaches to measure, calculate, and interpret mass balance can vary among different pharmaceutical companies. Such disparities also pose difficulties for health authorities when reviewing mass balance assessments, which may result in the potential delay of drug application approvals. The authors have gathered input from 10 pharma companies to map out a practical review of science-based approaches and technical details to assess and interpret mass balance results. Key concepts of mass balance are introduced, various mass balance calculations are demonstrated, and recommendations on how to investigate poor mass balance results are presented using real-world case studies. Herein we provide a single source reference on the topic of mass balance in pharmaceutical forced degradation for small molecule drug substances and drug products in support of regulatory submissions with the goal of facilitating a shared understanding among pharmaceutical scientists and health authorities.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.