{"title":"mm3DSNet:用于肝胆管 CT 扫描的多尺度、多前馈自注意力三维分割网络。","authors":"Yinghong Zhou, Yiying Xie, Nian Cai, Yuchen Liang, Ruifeng Gong, Ping Wang","doi":"10.1007/s11517-024-03183-z","DOIUrl":null,"url":null,"abstract":"<p><p>Image segmentation is a key step of the 3D reconstruction of the hepatobiliary duct tree, which is significant for preoperative planning. In this paper, a novel 3D U-Net variant is designed for CT image segmentation of hepatobiliary ducts from the abdominal CT scans, which is composed of a 3D encoder-decoder and a 3D multi-feedforward self-attention module (MFSAM). To well sufficient semantic and spatial features with high inference speed, the 3D ConvNeXt block is designed as the 3D extension of the 2D ConvNeXt. To improve the ability of semantic feature extraction, the MFSAM is designed to transfer the semantic and spatial features at different scales from the encoder to the decoder. Also, to balance the losses for the voxels and the edges of the hepatobiliary ducts, a boundary-aware overlap cross-entropy loss is proposed by combining the cross-entropy loss, the Dice loss, and the boundary loss. Experimental results indicate that the proposed method is superior to some existing deep networks as well as the radiologist without rich experience in terms of CT segmentation of hepatobiliary ducts, with a segmentation performance of 76.54% Dice and 6.56 HD.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"mm3DSNet: multi-scale and multi-feedforward self-attention 3D segmentation network for CT scans of hepatobiliary ducts.\",\"authors\":\"Yinghong Zhou, Yiying Xie, Nian Cai, Yuchen Liang, Ruifeng Gong, Ping Wang\",\"doi\":\"10.1007/s11517-024-03183-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image segmentation is a key step of the 3D reconstruction of the hepatobiliary duct tree, which is significant for preoperative planning. In this paper, a novel 3D U-Net variant is designed for CT image segmentation of hepatobiliary ducts from the abdominal CT scans, which is composed of a 3D encoder-decoder and a 3D multi-feedforward self-attention module (MFSAM). To well sufficient semantic and spatial features with high inference speed, the 3D ConvNeXt block is designed as the 3D extension of the 2D ConvNeXt. To improve the ability of semantic feature extraction, the MFSAM is designed to transfer the semantic and spatial features at different scales from the encoder to the decoder. Also, to balance the losses for the voxels and the edges of the hepatobiliary ducts, a boundary-aware overlap cross-entropy loss is proposed by combining the cross-entropy loss, the Dice loss, and the boundary loss. Experimental results indicate that the proposed method is superior to some existing deep networks as well as the radiologist without rich experience in terms of CT segmentation of hepatobiliary ducts, with a segmentation performance of 76.54% Dice and 6.56 HD.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03183-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03183-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
mm3DSNet: multi-scale and multi-feedforward self-attention 3D segmentation network for CT scans of hepatobiliary ducts.
Image segmentation is a key step of the 3D reconstruction of the hepatobiliary duct tree, which is significant for preoperative planning. In this paper, a novel 3D U-Net variant is designed for CT image segmentation of hepatobiliary ducts from the abdominal CT scans, which is composed of a 3D encoder-decoder and a 3D multi-feedforward self-attention module (MFSAM). To well sufficient semantic and spatial features with high inference speed, the 3D ConvNeXt block is designed as the 3D extension of the 2D ConvNeXt. To improve the ability of semantic feature extraction, the MFSAM is designed to transfer the semantic and spatial features at different scales from the encoder to the decoder. Also, to balance the losses for the voxels and the edges of the hepatobiliary ducts, a boundary-aware overlap cross-entropy loss is proposed by combining the cross-entropy loss, the Dice loss, and the boundary loss. Experimental results indicate that the proposed method is superior to some existing deep networks as well as the radiologist without rich experience in terms of CT segmentation of hepatobiliary ducts, with a segmentation performance of 76.54% Dice and 6.56 HD.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).