用于治疗转移性钙化抗性前列腺癌的特异性稳定 PSMA 靶向抗体药物共轭物 ARX517 的临床前特征。

IF 5.3 2区 医学 Q1 ONCOLOGY
Lillian K Skidmore, David Mills, Ji Young Kim, Nick A Knudsen, Jay D Nelson, Manoj Pal, Jianing Wang, Kedar Gc, Michael J Gray, Wisam Barkho, Prathap Nagaraja Shastri, Mysore P Ramprasad, Feng Tian, Daniel O'Connor, Ying J Buechler, Shawn Shao-Hui Zhang
{"title":"用于治疗转移性钙化抗性前列腺癌的特异性稳定 PSMA 靶向抗体药物共轭物 ARX517 的临床前特征。","authors":"Lillian K Skidmore, David Mills, Ji Young Kim, Nick A Knudsen, Jay D Nelson, Manoj Pal, Jianing Wang, Kedar Gc, Michael J Gray, Wisam Barkho, Prathap Nagaraja Shastri, Mysore P Ramprasad, Feng Tian, Daniel O'Connor, Ying J Buechler, Shawn Shao-Hui Zhang","doi":"10.1158/1535-7163.MCT-23-0927","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) is an advanced disease in which patients ultimately fail standard of care androgen-deprivation therapies and exhibit poor survival rates. The prostate-specific membrane antigen (PSMA) has been validated as a mCRPC tumor antigen with over-expression in tumors and low expression in healthy tissues. Using our proprietary technology for incorporating synthetic amino acids (SAAs) into proteins at selected sites, we have developed ARX517, an antibody drug conjugate (ADC) which is composed of a humanized anti-PSMA antibody site-specifically conjugated to a tubulin inhibitor at a drug-to-antibody ratio of 2. After binding PSMA, ARX517 is internalized and catabolized, leading to cytotoxic payload delivery and apoptosis. To minimize premature payload release and maximize delivery to tumor cells, ARX517 employs a non-cleavable PEG linker and stable oxime conjugation enabled via SAA protein incorporation to ensure its overall stability. In vitro studies demonstrate that ARX517 selectively induces cytotoxicity of PSMA-expressing tumor cell lines. ARX517 exhibited a long terminal half-life and high serum exposure in mice, and dose-dependent anti-tumor activity in both enzalutamide-sensitive and -resistant CDX and PDX prostate cancer models. Repeat dose toxicokinetic studies in non-human primates demonstrated ARX517 was tolerated at exposures well above therapeutic exposures in mouse pharmacology studies, indicating a wide therapeutic index. In summary, ARX517 inhibited tumor growth in diverse mCRPC models, demonstrated a tolerable safety profile in monkeys, and had a wide therapeutic index based on preclinical exposure data. Based on the encouraging preclinical data, ARX517 is currently being evaluated in a Phase 1 clinical trial ([NCT04662580]).</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preclinical Characterization of ARX517, a Site-specific Stable PSMA-Targeted Antibody Drug Conjugate for Treatment of Metastatic Castration-Resistant Prostate Cancer.\",\"authors\":\"Lillian K Skidmore, David Mills, Ji Young Kim, Nick A Knudsen, Jay D Nelson, Manoj Pal, Jianing Wang, Kedar Gc, Michael J Gray, Wisam Barkho, Prathap Nagaraja Shastri, Mysore P Ramprasad, Feng Tian, Daniel O'Connor, Ying J Buechler, Shawn Shao-Hui Zhang\",\"doi\":\"10.1158/1535-7163.MCT-23-0927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) is an advanced disease in which patients ultimately fail standard of care androgen-deprivation therapies and exhibit poor survival rates. The prostate-specific membrane antigen (PSMA) has been validated as a mCRPC tumor antigen with over-expression in tumors and low expression in healthy tissues. Using our proprietary technology for incorporating synthetic amino acids (SAAs) into proteins at selected sites, we have developed ARX517, an antibody drug conjugate (ADC) which is composed of a humanized anti-PSMA antibody site-specifically conjugated to a tubulin inhibitor at a drug-to-antibody ratio of 2. After binding PSMA, ARX517 is internalized and catabolized, leading to cytotoxic payload delivery and apoptosis. To minimize premature payload release and maximize delivery to tumor cells, ARX517 employs a non-cleavable PEG linker and stable oxime conjugation enabled via SAA protein incorporation to ensure its overall stability. In vitro studies demonstrate that ARX517 selectively induces cytotoxicity of PSMA-expressing tumor cell lines. ARX517 exhibited a long terminal half-life and high serum exposure in mice, and dose-dependent anti-tumor activity in both enzalutamide-sensitive and -resistant CDX and PDX prostate cancer models. Repeat dose toxicokinetic studies in non-human primates demonstrated ARX517 was tolerated at exposures well above therapeutic exposures in mouse pharmacology studies, indicating a wide therapeutic index. In summary, ARX517 inhibited tumor growth in diverse mCRPC models, demonstrated a tolerable safety profile in monkeys, and had a wide therapeutic index based on preclinical exposure data. Based on the encouraging preclinical data, ARX517 is currently being evaluated in a Phase 1 clinical trial ([NCT04662580]).</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-23-0927\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0927","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转移性抗性前列腺癌(mCRPC)是一种晚期疾病,患者最终无法接受标准的雄激素剥夺疗法,生存率很低。前列腺特异性膜抗原(PSMA)已被证实是一种在肿瘤中过度表达而在健康组织中低表达的 mCRPC 肿瘤抗原。利用我们在选定位点将合成氨基酸 (SAAs) 加入蛋白质的专有技术,我们开发出了抗体药物共轭物 (ADC)--ARX517,它由人源化的抗 PSMA 抗体位点特异性地与微管蛋白抑制剂结合而成,药物与抗体的比例为 2。为了最大限度地减少有效载荷的过早释放并最大限度地向肿瘤细胞递送,ARX517 采用了不易破碎的 PEG 连接体,并通过 SAA 蛋白结合实现稳定的肟连接,以确保其整体稳定性。体外研究表明,ARX517 可选择性地诱导表达 PSMA 的肿瘤细胞株产生细胞毒性。ARX517 在小鼠体内具有较长的终末半衰期和较高的血清暴露量,在对恩扎鲁胺敏感和耐药的 CDX 和 PDX 前列腺癌模型中均表现出剂量依赖性抗肿瘤活性。在非人灵长类动物中进行的重复剂量毒物动力学研究表明,ARX517 的耐受暴露量远高于小鼠药理学研究中的治疗暴露量,这表明它具有广泛的治疗指数。总之,ARX517 可抑制多种 mCRPC 模型中的肿瘤生长,在猴子体内表现出可耐受的安全性,并且根据临床前暴露数据,具有广泛的治疗指数。基于令人鼓舞的临床前数据,ARX517 目前正接受 1 期临床试验([NCT04662580])的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preclinical Characterization of ARX517, a Site-specific Stable PSMA-Targeted Antibody Drug Conjugate for Treatment of Metastatic Castration-Resistant Prostate Cancer.

Metastatic castration-resistant prostate cancer (mCRPC) is an advanced disease in which patients ultimately fail standard of care androgen-deprivation therapies and exhibit poor survival rates. The prostate-specific membrane antigen (PSMA) has been validated as a mCRPC tumor antigen with over-expression in tumors and low expression in healthy tissues. Using our proprietary technology for incorporating synthetic amino acids (SAAs) into proteins at selected sites, we have developed ARX517, an antibody drug conjugate (ADC) which is composed of a humanized anti-PSMA antibody site-specifically conjugated to a tubulin inhibitor at a drug-to-antibody ratio of 2. After binding PSMA, ARX517 is internalized and catabolized, leading to cytotoxic payload delivery and apoptosis. To minimize premature payload release and maximize delivery to tumor cells, ARX517 employs a non-cleavable PEG linker and stable oxime conjugation enabled via SAA protein incorporation to ensure its overall stability. In vitro studies demonstrate that ARX517 selectively induces cytotoxicity of PSMA-expressing tumor cell lines. ARX517 exhibited a long terminal half-life and high serum exposure in mice, and dose-dependent anti-tumor activity in both enzalutamide-sensitive and -resistant CDX and PDX prostate cancer models. Repeat dose toxicokinetic studies in non-human primates demonstrated ARX517 was tolerated at exposures well above therapeutic exposures in mouse pharmacology studies, indicating a wide therapeutic index. In summary, ARX517 inhibited tumor growth in diverse mCRPC models, demonstrated a tolerable safety profile in monkeys, and had a wide therapeutic index based on preclinical exposure data. Based on the encouraging preclinical data, ARX517 is currently being evaluated in a Phase 1 clinical trial ([NCT04662580]).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信