Holly J. Coleman , Qin Yang , Amanda Robert , Hannah Padgette , Hans H. Funke , Carlos E. Catalano , Theodore W. Randolph
{"title":"利用喷雾干燥和原子层沉积技术配制三尾噬菌体,实现热稳定性和控释。","authors":"Holly J. Coleman , Qin Yang , Amanda Robert , Hannah Padgette , Hans H. Funke , Carlos E. Catalano , Theodore W. Randolph","doi":"10.1016/j.xphs.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>Deep infection is the second most common complication of arthroplasty following loosening of the implant. Antibiotic-loaded bone cements (ALBCs) and high concentrations of systemic broad-spectrum antibiotics are commonly used to prevent infections following injury and surgery. However, clinical data fails to show that ALBCs are effective against deep infection, and negative side effects can result following prolonged administration of antibiotics. Additionally, the rise of multidrug resistant (MDR) bacteria provides an urgent need for alternatives to broad-spectrum antibiotics. Phage therapy, or the use of bacteriophages (viruses that infect bacteria) to target pathogenic bacteria, might offer a safe alternative to combat MDR bacteria. Application of phage therapy in the setting of deep infections requires formulation strategies that would stabilize bacteriophage against chemical and thermal stress during bone-cement polymerization, that maintain bacteriophage activity for weeks or months at physiological temperatures, and that allow for sustained release of phage to combat slow-growing, persistent bacteria. Here, we demonstrate the formulation of three phages that target diverse bacterial pathogens, which includes spray-drying of the particles for enhanced thermal stability at 37 °C and above. Additionally, we use atomic layer deposition (ALD) to coat spray-dried powders with alumina to allow for delayed release of phage from the dry formulations, and potentially protect phage against chemical damage during bone cement polymerization. Together, these findings present a strategy to formulate phages that possess thermal stability and sustained release properties for use in deep infections.</div></div>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":"113 11","pages":"Pages 3238-3245"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation of three tailed bacteriophages by spray-drying and atomic layer deposition for thermal stability and controlled release\",\"authors\":\"Holly J. Coleman , Qin Yang , Amanda Robert , Hannah Padgette , Hans H. Funke , Carlos E. Catalano , Theodore W. Randolph\",\"doi\":\"10.1016/j.xphs.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep infection is the second most common complication of arthroplasty following loosening of the implant. Antibiotic-loaded bone cements (ALBCs) and high concentrations of systemic broad-spectrum antibiotics are commonly used to prevent infections following injury and surgery. However, clinical data fails to show that ALBCs are effective against deep infection, and negative side effects can result following prolonged administration of antibiotics. Additionally, the rise of multidrug resistant (MDR) bacteria provides an urgent need for alternatives to broad-spectrum antibiotics. Phage therapy, or the use of bacteriophages (viruses that infect bacteria) to target pathogenic bacteria, might offer a safe alternative to combat MDR bacteria. Application of phage therapy in the setting of deep infections requires formulation strategies that would stabilize bacteriophage against chemical and thermal stress during bone-cement polymerization, that maintain bacteriophage activity for weeks or months at physiological temperatures, and that allow for sustained release of phage to combat slow-growing, persistent bacteria. Here, we demonstrate the formulation of three phages that target diverse bacterial pathogens, which includes spray-drying of the particles for enhanced thermal stability at 37 °C and above. Additionally, we use atomic layer deposition (ALD) to coat spray-dried powders with alumina to allow for delayed release of phage from the dry formulations, and potentially protect phage against chemical damage during bone cement polymerization. Together, these findings present a strategy to formulate phages that possess thermal stability and sustained release properties for use in deep infections.</div></div>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":\"113 11\",\"pages\":\"Pages 3238-3245\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022354924003058\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022354924003058","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Formulation of three tailed bacteriophages by spray-drying and atomic layer deposition for thermal stability and controlled release
Deep infection is the second most common complication of arthroplasty following loosening of the implant. Antibiotic-loaded bone cements (ALBCs) and high concentrations of systemic broad-spectrum antibiotics are commonly used to prevent infections following injury and surgery. However, clinical data fails to show that ALBCs are effective against deep infection, and negative side effects can result following prolonged administration of antibiotics. Additionally, the rise of multidrug resistant (MDR) bacteria provides an urgent need for alternatives to broad-spectrum antibiotics. Phage therapy, or the use of bacteriophages (viruses that infect bacteria) to target pathogenic bacteria, might offer a safe alternative to combat MDR bacteria. Application of phage therapy in the setting of deep infections requires formulation strategies that would stabilize bacteriophage against chemical and thermal stress during bone-cement polymerization, that maintain bacteriophage activity for weeks or months at physiological temperatures, and that allow for sustained release of phage to combat slow-growing, persistent bacteria. Here, we demonstrate the formulation of three phages that target diverse bacterial pathogens, which includes spray-drying of the particles for enhanced thermal stability at 37 °C and above. Additionally, we use atomic layer deposition (ALD) to coat spray-dried powders with alumina to allow for delayed release of phage from the dry formulations, and potentially protect phage against chemical damage during bone cement polymerization. Together, these findings present a strategy to formulate phages that possess thermal stability and sustained release properties for use in deep infections.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.