RNA 结合蛋白对白血病干细胞进化和功能的定向控制

IF 7.6 2区 医学 Q1 HEMATOLOGY
HemaSphere Pub Date : 2024-08-22 DOI:10.1002/hem3.116
Pratik Joshi, Ava Keyvani Chahi, Lina Liu, Steven Moreira, Ana Vujovic, Kristin J. Hope
{"title":"RNA 结合蛋白对白血病干细胞进化和功能的定向控制","authors":"Pratik Joshi,&nbsp;Ava Keyvani Chahi,&nbsp;Lina Liu,&nbsp;Steven Moreira,&nbsp;Ana Vujovic,&nbsp;Kristin J. Hope","doi":"10.1002/hem3.116","DOIUrl":null,"url":null,"abstract":"<p>Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post–transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post–transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post–transcriptional control as actionable targets for precision therapy of AML.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"8 8","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339706/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNA binding protein-directed control of leukemic stem cell evolution and function\",\"authors\":\"Pratik Joshi,&nbsp;Ava Keyvani Chahi,&nbsp;Lina Liu,&nbsp;Steven Moreira,&nbsp;Ana Vujovic,&nbsp;Kristin J. Hope\",\"doi\":\"10.1002/hem3.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post–transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post–transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post–transcriptional control as actionable targets for precision therapy of AML.</p>\",\"PeriodicalId\":12982,\"journal\":{\"name\":\"HemaSphere\",\"volume\":\"8 8\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HemaSphere\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hem3.116\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.116","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对造血干细胞决策的严格控制是终身健康造血的关键,也是造血疾病的根源。急性髓性白血病(AML)是一种毁灭性的造血恶性肿瘤,它是由致病原始细胞的克隆进化引起的,随着时间的推移,原始细胞的基因会发生复合变化,最终产生白血病干细胞(LSC)。了解这些驱动细胞在整个发育过程中的分子基础,将有助于阻断白血病、有效治疗白血病前期病症以及开发针对急性髓细胞白血病的策略。在这一点上,一些癌前髓细胞疾病和与年龄相关的改变被证明是具有启发性的模型,可用于深入了解 LSCs 的启动。在这里,我们从转录后控制的层面探讨了这种髓系失调,RNA 结合蛋白(RBPs)在其中发挥着核心效应物的作用。通过调节无数 RNA 代谢过程的相互作用,RBPs 可协调转录本的命运,从而控制健康和疾病中的基因表达。我们描述了人们对 RBPs 及其转录后网络在维持健康造血过程中的作用以及它们在克隆性髓系疾病和急性髓细胞性白血病发病机制中的失调的认识不断扩大,并特别强调了在人类干细胞中的发现。最后,我们将讨论一些关键性突破,这些突破强调了RBPs和转录后控制是急性髓细胞性白血病精准治疗的可行靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RNA binding protein-directed control of leukemic stem cell evolution and function

RNA binding protein-directed control of leukemic stem cell evolution and function

Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post–transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post–transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post–transcriptional control as actionable targets for precision therapy of AML.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HemaSphere
HemaSphere Medicine-Hematology
CiteScore
6.10
自引率
4.50%
发文量
2776
审稿时长
7 weeks
期刊介绍: HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology. In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care. Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信