Zhoujin Wen, Tianli Yuan, Jiamin Liu, Dongyang Wang, Jun Ni, Xuehan Yan, Jian Tang, Jiayin Tang, Xuefeng Wu, Zheng Wang
{"title":"Atg16l2通过促进NAIPs-NLRC4的结合来增强Nlrc4炎性体的激活。","authors":"Zhoujin Wen, Tianli Yuan, Jiamin Liu, Dongyang Wang, Jun Ni, Xuehan Yan, Jian Tang, Jiayin Tang, Xuefeng Wu, Zheng Wang","doi":"10.1002/eji.202451078","DOIUrl":null,"url":null,"abstract":"<p>As cytoplasmic protein complexes that are pivotal for innate immunity, inflammasomes act primarily through the detection of pathogen- or danger-associated molecular patterns. Nucleotide oligomerisation domain-like receptor family and caspase activation recruitment domain-containing protein 4 (NLRC4) inflammasomes identify and eliminate intracellular pathogens, a process contingent on the ligand-recognition capabilities of neuronal apoptosis inhibitory proteins (NAIPs). Upon detection of specific molecules indicative of intracellular infection, NAIPs discern distinct pathogenic components and subsequently transmit signals to NLRC4, thus initiating their activation and triggering an inflammatory response. However, the mechanisms underlying NLRC4 inflammasome remain unclear. In this study, we elucidated the critical role of ATG16L2 in activating the NLRC4 inflammasome. ATG16L2-deficient macrophages exhibited reduced NLRC4 inflammasome activation, characterised by decreased oligomerisation of apoptosis-associated speck-like protein containing a CARD and attenuated cleavage of Pro-caspase-1, Pro-IL-1β and gasdermin D. Co-immunoprecipitation assays revealed an interaction between ATG16L2 and NAIPs. Furthermore, ATG16L2 enhanced the association between NAIPs and NLRC4 by binding to NAIPs. For ATG16L2-knockout mice infected with <i>Salmonella typhimurium</i>, pathogen clearance and survival rates markedly decreased. Collectively, our findings suggest that ATG16L2 is a significant modulator of the innate immune system, influencing the activity of the NLRC4 inflammasome and the host's defensive response to intracellular pathogens.</p>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"54 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451078","citationCount":"0","resultStr":"{\"title\":\"Atg16l2 augments Nlrc4 inflammasome activation by facilitating NAIPs–NLRC4 association\",\"authors\":\"Zhoujin Wen, Tianli Yuan, Jiamin Liu, Dongyang Wang, Jun Ni, Xuehan Yan, Jian Tang, Jiayin Tang, Xuefeng Wu, Zheng Wang\",\"doi\":\"10.1002/eji.202451078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As cytoplasmic protein complexes that are pivotal for innate immunity, inflammasomes act primarily through the detection of pathogen- or danger-associated molecular patterns. Nucleotide oligomerisation domain-like receptor family and caspase activation recruitment domain-containing protein 4 (NLRC4) inflammasomes identify and eliminate intracellular pathogens, a process contingent on the ligand-recognition capabilities of neuronal apoptosis inhibitory proteins (NAIPs). Upon detection of specific molecules indicative of intracellular infection, NAIPs discern distinct pathogenic components and subsequently transmit signals to NLRC4, thus initiating their activation and triggering an inflammatory response. However, the mechanisms underlying NLRC4 inflammasome remain unclear. In this study, we elucidated the critical role of ATG16L2 in activating the NLRC4 inflammasome. ATG16L2-deficient macrophages exhibited reduced NLRC4 inflammasome activation, characterised by decreased oligomerisation of apoptosis-associated speck-like protein containing a CARD and attenuated cleavage of Pro-caspase-1, Pro-IL-1β and gasdermin D. Co-immunoprecipitation assays revealed an interaction between ATG16L2 and NAIPs. Furthermore, ATG16L2 enhanced the association between NAIPs and NLRC4 by binding to NAIPs. For ATG16L2-knockout mice infected with <i>Salmonella typhimurium</i>, pathogen clearance and survival rates markedly decreased. Collectively, our findings suggest that ATG16L2 is a significant modulator of the innate immune system, influencing the activity of the NLRC4 inflammasome and the host's defensive response to intracellular pathogens.</p>\",\"PeriodicalId\":165,\"journal\":{\"name\":\"European Journal of Immunology\",\"volume\":\"54 11\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eji.202451078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451078\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Atg16l2 augments Nlrc4 inflammasome activation by facilitating NAIPs–NLRC4 association
As cytoplasmic protein complexes that are pivotal for innate immunity, inflammasomes act primarily through the detection of pathogen- or danger-associated molecular patterns. Nucleotide oligomerisation domain-like receptor family and caspase activation recruitment domain-containing protein 4 (NLRC4) inflammasomes identify and eliminate intracellular pathogens, a process contingent on the ligand-recognition capabilities of neuronal apoptosis inhibitory proteins (NAIPs). Upon detection of specific molecules indicative of intracellular infection, NAIPs discern distinct pathogenic components and subsequently transmit signals to NLRC4, thus initiating their activation and triggering an inflammatory response. However, the mechanisms underlying NLRC4 inflammasome remain unclear. In this study, we elucidated the critical role of ATG16L2 in activating the NLRC4 inflammasome. ATG16L2-deficient macrophages exhibited reduced NLRC4 inflammasome activation, characterised by decreased oligomerisation of apoptosis-associated speck-like protein containing a CARD and attenuated cleavage of Pro-caspase-1, Pro-IL-1β and gasdermin D. Co-immunoprecipitation assays revealed an interaction between ATG16L2 and NAIPs. Furthermore, ATG16L2 enhanced the association between NAIPs and NLRC4 by binding to NAIPs. For ATG16L2-knockout mice infected with Salmonella typhimurium, pathogen clearance and survival rates markedly decreased. Collectively, our findings suggest that ATG16L2 is a significant modulator of the innate immune system, influencing the activity of the NLRC4 inflammasome and the host's defensive response to intracellular pathogens.
期刊介绍:
The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.