Yodhara Wijesekara Hanthi, Miguel Angel Ramirez-Otero, Robert Appleby, Anna De Antoni, Luay Joudeh, Vincenzo Sannino, Salli Waked, Alessandra Ardizzoia, Viviana Barra, Daniele Fachinetti, Luca Pellegrini, Vincenzo Costanzo
{"title":"RAD51 保护消融位点,防止复制叉断裂","authors":"Yodhara Wijesekara Hanthi, Miguel Angel Ramirez-Otero, Robert Appleby, Anna De Antoni, Luay Joudeh, Vincenzo Sannino, Salli Waked, Alessandra Ardizzoia, Viviana Barra, Daniele Fachinetti, Luca Pellegrini, Vincenzo Costanzo","doi":"10.1016/j.molcel.2024.07.004","DOIUrl":null,"url":null,"abstract":"<p>Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), <em>Xenopus laevis</em> egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":14.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAD51 protects abasic sites to prevent replication fork breakage\",\"authors\":\"Yodhara Wijesekara Hanthi, Miguel Angel Ramirez-Otero, Robert Appleby, Anna De Antoni, Luay Joudeh, Vincenzo Sannino, Salli Waked, Alessandra Ardizzoia, Viviana Barra, Daniele Fachinetti, Luca Pellegrini, Vincenzo Costanzo\",\"doi\":\"10.1016/j.molcel.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), <em>Xenopus laevis</em> egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.</p>\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.07.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.07.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
消减位点是通过碱基切除修复的 DNA 损伤。在 DNA 复制过程中,单链 DNA(ssDNA)中未修复的缺损位点的裂解可导致染色体断裂。人们对如何防止缺失 DNA 断裂仍然知之甚少。在这里,我们利用低温电子显微镜(cryo-EM)、爪蟾卵提取物和人类细胞,证明了 RAD51 核丝可特异性识别和保护缺失位点,从而提高 RAD51 与 DNA 的结合率。在缺乏 BRCA2 或 RAD51 的情况下,DNA 碱基甲基化、氧化和脱氨基作用会导致缺失位点积累,从而诱发缺失 ssDNA 间隙,使复制 DNA 纤维对 APE1 敏感。组装在缺损 DNA 上的 RAD51 可阻止 MRE11-RAD50 复合物对缺损位点的裂解,从而抑制因缺损位点过多或 POLθ 聚合酶抑制而引发的复制叉断裂。我们的研究强调了 BRCA2 和 RAD51 在防止 DNA 模板中因碱基改变而产生的未修复的缺损位点、确保基因组稳定性方面的关键作用。
RAD51 protects abasic sites to prevent replication fork breakage
Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.