Jiu-Yang Liu, Ming Zhu, Feng-Wen Zhang, Hao-Fei Ni, Zhi-Long Li, Bo Zhuang, Kun Ding, Da-Wei Fu, Hai-Feng Lu and Meng-Meng Lun
{"title":"卤素调节具有光致发光和介电响应的多功能混合材料","authors":"Jiu-Yang Liu, Ming Zhu, Feng-Wen Zhang, Hao-Fei Ni, Zhi-Long Li, Bo Zhuang, Kun Ding, Da-Wei Fu, Hai-Feng Lu and Meng-Meng Lun","doi":"10.1039/D4QI01774A","DOIUrl":null,"url":null,"abstract":"<p >Organic–inorganic hybrid switching materials are extensively employed as stimulus-responsive materials in sensors, intelligent switches, optoelectronic devices, <em>etc</em>. However, the design of organic–inorganic hybrid materials (OIHMs) that integrate the dielectric switching response and superior photoluminescence (PL) continues to encounter challenges. Here, we synthesized three zero-dimensional (0D) organic–inorganic hybrid PL compounds using a halogen regulation strategy, (2,5-FBTA)<small><sub>2</sub></small>MnX<small><sub>4</sub></small> (2,5-FBTA = 2,5-difluorobenzyltrimethylammonium, X = Br, Cl, I), which are FBTAM-Br, FBTAM-Cl, and FBTAM-I. With the halogen atom transitioning from I to Br, the phase transition temperature (<em>T</em><small><sub>p</sub></small>) gradually increases due to the enhanced intermolecular interaction force, with the <em>T</em><small><sub>p</sub></small> of FBTAM-I, FBTAM-Cl, and FBTAM-Br being 419, 425, and 438 K, respectively. In addition, the three compounds show excellent PL properties, and as the halogen atom transitions from I to Br, the PL quantum yields (PLQY) of FBTAM-I, FBTAM-Cl, and FBTAM-Br are 54.59%, 63.81% and 78.98%, respectively. Through a halogen regulation strategy, multifunctional OIHMs with dielectric and PL properties have been successfully synthesized. This not only enhances comprehension of the correlation between structures and properties but also introduces novel and innovative perspectives for the development of multifunctional OIHMs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halogen regulation of multifunctional hybrid materials with photoluminescence and dielectric response†\",\"authors\":\"Jiu-Yang Liu, Ming Zhu, Feng-Wen Zhang, Hao-Fei Ni, Zhi-Long Li, Bo Zhuang, Kun Ding, Da-Wei Fu, Hai-Feng Lu and Meng-Meng Lun\",\"doi\":\"10.1039/D4QI01774A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic–inorganic hybrid switching materials are extensively employed as stimulus-responsive materials in sensors, intelligent switches, optoelectronic devices, <em>etc</em>. However, the design of organic–inorganic hybrid materials (OIHMs) that integrate the dielectric switching response and superior photoluminescence (PL) continues to encounter challenges. Here, we synthesized three zero-dimensional (0D) organic–inorganic hybrid PL compounds using a halogen regulation strategy, (2,5-FBTA)<small><sub>2</sub></small>MnX<small><sub>4</sub></small> (2,5-FBTA = 2,5-difluorobenzyltrimethylammonium, X = Br, Cl, I), which are FBTAM-Br, FBTAM-Cl, and FBTAM-I. With the halogen atom transitioning from I to Br, the phase transition temperature (<em>T</em><small><sub>p</sub></small>) gradually increases due to the enhanced intermolecular interaction force, with the <em>T</em><small><sub>p</sub></small> of FBTAM-I, FBTAM-Cl, and FBTAM-Br being 419, 425, and 438 K, respectively. In addition, the three compounds show excellent PL properties, and as the halogen atom transitions from I to Br, the PL quantum yields (PLQY) of FBTAM-I, FBTAM-Cl, and FBTAM-Br are 54.59%, 63.81% and 78.98%, respectively. Through a halogen regulation strategy, multifunctional OIHMs with dielectric and PL properties have been successfully synthesized. This not only enhances comprehension of the correlation between structures and properties but also introduces novel and innovative perspectives for the development of multifunctional OIHMs.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01774a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01774a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Halogen regulation of multifunctional hybrid materials with photoluminescence and dielectric response†
Organic–inorganic hybrid switching materials are extensively employed as stimulus-responsive materials in sensors, intelligent switches, optoelectronic devices, etc. However, the design of organic–inorganic hybrid materials (OIHMs) that integrate the dielectric switching response and superior photoluminescence (PL) continues to encounter challenges. Here, we synthesized three zero-dimensional (0D) organic–inorganic hybrid PL compounds using a halogen regulation strategy, (2,5-FBTA)2MnX4 (2,5-FBTA = 2,5-difluorobenzyltrimethylammonium, X = Br, Cl, I), which are FBTAM-Br, FBTAM-Cl, and FBTAM-I. With the halogen atom transitioning from I to Br, the phase transition temperature (Tp) gradually increases due to the enhanced intermolecular interaction force, with the Tp of FBTAM-I, FBTAM-Cl, and FBTAM-Br being 419, 425, and 438 K, respectively. In addition, the three compounds show excellent PL properties, and as the halogen atom transitions from I to Br, the PL quantum yields (PLQY) of FBTAM-I, FBTAM-Cl, and FBTAM-Br are 54.59%, 63.81% and 78.98%, respectively. Through a halogen regulation strategy, multifunctional OIHMs with dielectric and PL properties have been successfully synthesized. This not only enhances comprehension of the correlation between structures and properties but also introduces novel and innovative perspectives for the development of multifunctional OIHMs.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.