通过随机有限集和低秩矩阵分解实现扩展红外目标过滤

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jian Su, Haiyin Zhou, Qi Yu, Jubo Zhu, Jiying Liu
{"title":"通过随机有限集和低秩矩阵分解实现扩展红外目标过滤","authors":"Jian Su,&nbsp;Haiyin Zhou,&nbsp;Qi Yu,&nbsp;Jubo Zhu,&nbsp;Jiying Liu","doi":"10.1049/2024/9914774","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Target detection in infrared remote sensing images has important practical applications. Among the current high-performance methods, the deep learning-based methods require training samples, and their generalization ability is also limited by the training set. The separation of low-rank and sparse matrix requires joint processing of multiple images with high computational complexity. The track-before-detect algorithms based on particle filtering also have high computational complexity. In this paper, the low-rank and sparse matrix of a single image are proposed for target detection, and a differentiable objective function is used in the separation. At the same time, an extended multitarget tracking algorithm based on random sets is used for target filtering between frames, and the design of the filters adopts the conjugate distribution under the Bayesian framework. Finally, the practical infrared sequence images containing multiple targets and complex backgrounds were employed to verify the performance of the proposed algorithms by comparing them with state-of-the-art algorithms.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/9914774","citationCount":"0","resultStr":"{\"title\":\"Extended Infrared Target Filtering via Random Finite Set and Low-Rank Matrix Decomposition\",\"authors\":\"Jian Su,&nbsp;Haiyin Zhou,&nbsp;Qi Yu,&nbsp;Jubo Zhu,&nbsp;Jiying Liu\",\"doi\":\"10.1049/2024/9914774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Target detection in infrared remote sensing images has important practical applications. Among the current high-performance methods, the deep learning-based methods require training samples, and their generalization ability is also limited by the training set. The separation of low-rank and sparse matrix requires joint processing of multiple images with high computational complexity. The track-before-detect algorithms based on particle filtering also have high computational complexity. In this paper, the low-rank and sparse matrix of a single image are proposed for target detection, and a differentiable objective function is used in the separation. At the same time, an extended multitarget tracking algorithm based on random sets is used for target filtering between frames, and the design of the filters adopts the conjugate distribution under the Bayesian framework. Finally, the practical infrared sequence images containing multiple targets and complex backgrounds were employed to verify the performance of the proposed algorithms by comparing them with state-of-the-art algorithms.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/9914774\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/9914774\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/9914774","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

红外遥感图像中的目标检测具有重要的实际应用价值。在目前的高性能方法中,基于深度学习的方法需要训练样本,其泛化能力也受到训练集的限制。低秩和稀疏矩阵的分离需要对多幅图像进行联合处理,计算复杂度较高。基于粒子滤波的先跟踪后检测算法的计算复杂度也很高。本文提出了单幅图像的低秩和稀疏矩阵目标检测方法,并在分离过程中使用了可微目标函数。同时,基于随机集的扩展多目标跟踪算法用于帧间目标滤波,滤波器的设计采用贝叶斯框架下的共轭分布。最后,利用包含多个目标和复杂背景的实际红外序列图像,通过与最先进算法的比较,验证了所提算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extended Infrared Target Filtering via Random Finite Set and Low-Rank Matrix Decomposition

Extended Infrared Target Filtering via Random Finite Set and Low-Rank Matrix Decomposition

Target detection in infrared remote sensing images has important practical applications. Among the current high-performance methods, the deep learning-based methods require training samples, and their generalization ability is also limited by the training set. The separation of low-rank and sparse matrix requires joint processing of multiple images with high computational complexity. The track-before-detect algorithms based on particle filtering also have high computational complexity. In this paper, the low-rank and sparse matrix of a single image are proposed for target detection, and a differentiable objective function is used in the separation. At the same time, an extended multitarget tracking algorithm based on random sets is used for target filtering between frames, and the design of the filters adopts the conjugate distribution under the Bayesian framework. Finally, the practical infrared sequence images containing multiple targets and complex backgrounds were employed to verify the performance of the proposed algorithms by comparing them with state-of-the-art algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信