{"title":"用自由体积概念解释掺杂空穴和/或电子诱导的超导穹顶","authors":"Tian Hao","doi":"10.1186/s40712-024-00159-7","DOIUrl":null,"url":null,"abstract":"<div><p>The conductivity equation developed in our previous work without any restrictions to specific materials is employed to explore how superconductivity transition temperature <span>\\(T_{c}\\)</span> changes with the doped hole or electron concentrations based on the free volume concept. The predicted relationship is used to fit experimental data available in the literature and a good agreement with observations is achieved. Our findings may provide an alternative explanation for doping-induced domes and/or double domes with a-dip phenomena observed among many superconductors.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00159-7","citationCount":"0","resultStr":"{\"title\":\"Doped holes and/or electrons induced superconductivity domes explained with the free volume concept\",\"authors\":\"Tian Hao\",\"doi\":\"10.1186/s40712-024-00159-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conductivity equation developed in our previous work without any restrictions to specific materials is employed to explore how superconductivity transition temperature <span>\\\\(T_{c}\\\\)</span> changes with the doped hole or electron concentrations based on the free volume concept. The predicted relationship is used to fit experimental data available in the literature and a good agreement with observations is achieved. Our findings may provide an alternative explanation for doping-induced domes and/or double domes with a-dip phenomena observed among many superconductors.</p></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00159-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-024-00159-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00159-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Doped holes and/or electrons induced superconductivity domes explained with the free volume concept
The conductivity equation developed in our previous work without any restrictions to specific materials is employed to explore how superconductivity transition temperature \(T_{c}\) changes with the doped hole or electron concentrations based on the free volume concept. The predicted relationship is used to fit experimental data available in the literature and a good agreement with observations is achieved. Our findings may provide an alternative explanation for doping-induced domes and/or double domes with a-dip phenomena observed among many superconductors.