{"title":"脊柱骨肿瘤的放射成像和诊断:用于肿瘤恶性程度分类的 AlexNet 和 ResNet","authors":"Chengquan Guo , Yan Chen , Jianjun Li","doi":"10.1016/j.jbo.2024.100629","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>This study aims to explore the application of radiographic imaging and image recognition algorithms, particularly AlexNet and ResNet, in classifying malignancies for spinal bone tumors.</p></div><div><h3>Methods</h3><p>We selected a cohort of 580 patients diagnosed with primary spinal osseous tumors who underwent treatment at our hospital between January 2016 and December 2023, whereby 1532 images (679 images of benign tumors, 853 images of malignant tumors) were extracted from this imaging dataset. Training and validation follow a ratio of 2:1. All patients underwent X-ray examinations as part of their diagnostic workup. This study employed convolutional neural networks (CNNs) to categorize spinal bone tumor images according to their malignancy. AlexNet and ResNet models were employed for this classification task. These models were fine-tuned through training, which involved the utilization of a database of bone tumor images representing different categories.</p></div><div><h3>Results</h3><p>Through rigorous experimentation, the performance of AlexNet and ResNet in classifying spinal bone tumor malignancy was extensively evaluated. The models were subjected to an extensive dataset of bone tumor images, and the following results were observed. AlexNet: This model exhibited commendable efficiency during training, with each epoch taking an average of 3 s. Its classification accuracy was found to be approximately 95.6 %. ResNet: The ResNet model showed remarkable accuracy in image classification. After an extended training period, it achieved a striking 96.2 % accuracy rate, signifying its proficiency in distinguishing the malignancy of spinal bone tumors. However, these results illustrate the clear advantage of AlexNet in terms of proficiency despite a lower classification accuracy. The robust performance of the ResNet model is auspicious when accuracy is more favored in the context of diagnosing spinal bone tumor malignancy, albeit at the cost of longer training times, with each epoch taking an average of 32 s.</p></div><div><h3>Conclusion</h3><p>Integrating deep learning and CNN-based image recognition technology offers a promising solution for qualitatively classifying bone tumors. This research underscores the potential of these models in enhancing the diagnosis and treatment processes for patients, benefiting both patients and medical professionals alike. The study highlights the significance of selecting appropriate models, such as ResNet, to improve accuracy in image recognition tasks.</p></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"48 ","pages":"Article 100629"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221213742400109X/pdfft?md5=c94f1dae2cfd227a4fe0e1942824e827&pid=1-s2.0-S221213742400109X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Radiographic imaging and diagnosis of spinal bone tumors: AlexNet and ResNet for the classification of tumor malignancy\",\"authors\":\"Chengquan Guo , Yan Chen , Jianjun Li\",\"doi\":\"10.1016/j.jbo.2024.100629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>This study aims to explore the application of radiographic imaging and image recognition algorithms, particularly AlexNet and ResNet, in classifying malignancies for spinal bone tumors.</p></div><div><h3>Methods</h3><p>We selected a cohort of 580 patients diagnosed with primary spinal osseous tumors who underwent treatment at our hospital between January 2016 and December 2023, whereby 1532 images (679 images of benign tumors, 853 images of malignant tumors) were extracted from this imaging dataset. Training and validation follow a ratio of 2:1. All patients underwent X-ray examinations as part of their diagnostic workup. This study employed convolutional neural networks (CNNs) to categorize spinal bone tumor images according to their malignancy. AlexNet and ResNet models were employed for this classification task. These models were fine-tuned through training, which involved the utilization of a database of bone tumor images representing different categories.</p></div><div><h3>Results</h3><p>Through rigorous experimentation, the performance of AlexNet and ResNet in classifying spinal bone tumor malignancy was extensively evaluated. The models were subjected to an extensive dataset of bone tumor images, and the following results were observed. AlexNet: This model exhibited commendable efficiency during training, with each epoch taking an average of 3 s. Its classification accuracy was found to be approximately 95.6 %. ResNet: The ResNet model showed remarkable accuracy in image classification. After an extended training period, it achieved a striking 96.2 % accuracy rate, signifying its proficiency in distinguishing the malignancy of spinal bone tumors. However, these results illustrate the clear advantage of AlexNet in terms of proficiency despite a lower classification accuracy. The robust performance of the ResNet model is auspicious when accuracy is more favored in the context of diagnosing spinal bone tumor malignancy, albeit at the cost of longer training times, with each epoch taking an average of 32 s.</p></div><div><h3>Conclusion</h3><p>Integrating deep learning and CNN-based image recognition technology offers a promising solution for qualitatively classifying bone tumors. This research underscores the potential of these models in enhancing the diagnosis and treatment processes for patients, benefiting both patients and medical professionals alike. The study highlights the significance of selecting appropriate models, such as ResNet, to improve accuracy in image recognition tasks.</p></div>\",\"PeriodicalId\":48806,\"journal\":{\"name\":\"Journal of Bone Oncology\",\"volume\":\"48 \",\"pages\":\"Article 100629\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221213742400109X/pdfft?md5=c94f1dae2cfd227a4fe0e1942824e827&pid=1-s2.0-S221213742400109X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221213742400109X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221213742400109X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Radiographic imaging and diagnosis of spinal bone tumors: AlexNet and ResNet for the classification of tumor malignancy
Objective
This study aims to explore the application of radiographic imaging and image recognition algorithms, particularly AlexNet and ResNet, in classifying malignancies for spinal bone tumors.
Methods
We selected a cohort of 580 patients diagnosed with primary spinal osseous tumors who underwent treatment at our hospital between January 2016 and December 2023, whereby 1532 images (679 images of benign tumors, 853 images of malignant tumors) were extracted from this imaging dataset. Training and validation follow a ratio of 2:1. All patients underwent X-ray examinations as part of their diagnostic workup. This study employed convolutional neural networks (CNNs) to categorize spinal bone tumor images according to their malignancy. AlexNet and ResNet models were employed for this classification task. These models were fine-tuned through training, which involved the utilization of a database of bone tumor images representing different categories.
Results
Through rigorous experimentation, the performance of AlexNet and ResNet in classifying spinal bone tumor malignancy was extensively evaluated. The models were subjected to an extensive dataset of bone tumor images, and the following results were observed. AlexNet: This model exhibited commendable efficiency during training, with each epoch taking an average of 3 s. Its classification accuracy was found to be approximately 95.6 %. ResNet: The ResNet model showed remarkable accuracy in image classification. After an extended training period, it achieved a striking 96.2 % accuracy rate, signifying its proficiency in distinguishing the malignancy of spinal bone tumors. However, these results illustrate the clear advantage of AlexNet in terms of proficiency despite a lower classification accuracy. The robust performance of the ResNet model is auspicious when accuracy is more favored in the context of diagnosing spinal bone tumor malignancy, albeit at the cost of longer training times, with each epoch taking an average of 32 s.
Conclusion
Integrating deep learning and CNN-based image recognition technology offers a promising solution for qualitatively classifying bone tumors. This research underscores the potential of these models in enhancing the diagnosis and treatment processes for patients, benefiting both patients and medical professionals alike. The study highlights the significance of selecting appropriate models, such as ResNet, to improve accuracy in image recognition tasks.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.