{"title":"塔琼利用贝叶斯优化增强堆叠模型,采用不同采样方法进行入侵检测","authors":"T. Anitha Kumari, Sanket Mishra","doi":"10.1016/j.eij.2024.100520","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of sensors in the monitoring of essential bodily measurements, air quality, and energy consumption in buildings demonstrates the importance of the Internet of Things (IoT) in everyday life. These security breaches are caused by rudimentary and immature security protocols that are implemented on IoT devices. An intrusion detection system is used to detect security threats and system-level applications to detect malicious activities. This paper introduces Tachyon, a combination of various statistical and tree-based Artificial Intelligence (AI) techniques, such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Bidirectional Auto-Regressive Transformers (BART), Logistic Regression (LR), Multivariate Adaptive Regression Splines (MARS), Decision Tree (DT), and a top k stack ensemble to distinguish between normal and malicious attacks in a binary classification setting. The IoTID2020 dataset used in this study consists of 6,25,783 samples with 83 features. An initial examination of the data reveals its unbalanced nature. To create a balanced dataset, a range of sampling techniques were used, including Oversampling, Undersampling, Synthetic Minority Oversampling Technique (SMOTE), Random Oversampling Examples (ROSE), Borderline Synthetic Minority Oversampling Technique (b-SMOTE), and Adaptive Synthetic (ADASYN). In addition, principal component analysis (PCA) and partial least squares (PLS) were used to determine the most significant features. The experimental results demonstrate that the stacked ensemble achieved a performance of 99.8%, which is better than the baseline approaches. An ablation study of ensemble models was also conducted to assess the performance of the proposed model in various scenarios.</p></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110866524000835/pdfft?md5=7cf69161e9063af8d9dfa578dc2f9947&pid=1-s2.0-S1110866524000835-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tachyon: Enhancing stacked models using Bayesian optimization for intrusion detection using different sampling approaches\",\"authors\":\"T. Anitha Kumari, Sanket Mishra\",\"doi\":\"10.1016/j.eij.2024.100520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of sensors in the monitoring of essential bodily measurements, air quality, and energy consumption in buildings demonstrates the importance of the Internet of Things (IoT) in everyday life. These security breaches are caused by rudimentary and immature security protocols that are implemented on IoT devices. An intrusion detection system is used to detect security threats and system-level applications to detect malicious activities. This paper introduces Tachyon, a combination of various statistical and tree-based Artificial Intelligence (AI) techniques, such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Bidirectional Auto-Regressive Transformers (BART), Logistic Regression (LR), Multivariate Adaptive Regression Splines (MARS), Decision Tree (DT), and a top k stack ensemble to distinguish between normal and malicious attacks in a binary classification setting. The IoTID2020 dataset used in this study consists of 6,25,783 samples with 83 features. An initial examination of the data reveals its unbalanced nature. To create a balanced dataset, a range of sampling techniques were used, including Oversampling, Undersampling, Synthetic Minority Oversampling Technique (SMOTE), Random Oversampling Examples (ROSE), Borderline Synthetic Minority Oversampling Technique (b-SMOTE), and Adaptive Synthetic (ADASYN). In addition, principal component analysis (PCA) and partial least squares (PLS) were used to determine the most significant features. The experimental results demonstrate that the stacked ensemble achieved a performance of 99.8%, which is better than the baseline approaches. An ablation study of ensemble models was also conducted to assess the performance of the proposed model in various scenarios.</p></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110866524000835/pdfft?md5=7cf69161e9063af8d9dfa578dc2f9947&pid=1-s2.0-S1110866524000835-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524000835\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524000835","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Tachyon: Enhancing stacked models using Bayesian optimization for intrusion detection using different sampling approaches
The integration of sensors in the monitoring of essential bodily measurements, air quality, and energy consumption in buildings demonstrates the importance of the Internet of Things (IoT) in everyday life. These security breaches are caused by rudimentary and immature security protocols that are implemented on IoT devices. An intrusion detection system is used to detect security threats and system-level applications to detect malicious activities. This paper introduces Tachyon, a combination of various statistical and tree-based Artificial Intelligence (AI) techniques, such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Bidirectional Auto-Regressive Transformers (BART), Logistic Regression (LR), Multivariate Adaptive Regression Splines (MARS), Decision Tree (DT), and a top k stack ensemble to distinguish between normal and malicious attacks in a binary classification setting. The IoTID2020 dataset used in this study consists of 6,25,783 samples with 83 features. An initial examination of the data reveals its unbalanced nature. To create a balanced dataset, a range of sampling techniques were used, including Oversampling, Undersampling, Synthetic Minority Oversampling Technique (SMOTE), Random Oversampling Examples (ROSE), Borderline Synthetic Minority Oversampling Technique (b-SMOTE), and Adaptive Synthetic (ADASYN). In addition, principal component analysis (PCA) and partial least squares (PLS) were used to determine the most significant features. The experimental results demonstrate that the stacked ensemble achieved a performance of 99.8%, which is better than the baseline approaches. An ablation study of ensemble models was also conducted to assess the performance of the proposed model in various scenarios.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.