嵌入凸多边形的最大单位矩形

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Jaehoon Chung , Sang Won Bae , Chan-Su Shin , Sang Duk Yoon , Hee-Kap Ahn
{"title":"嵌入凸多边形的最大单位矩形","authors":"Jaehoon Chung ,&nbsp;Sang Won Bae ,&nbsp;Chan-Su Shin ,&nbsp;Sang Duk Yoon ,&nbsp;Hee-Kap Ahn","doi":"10.1016/j.comgeo.2024.102135","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an optimization problem of inscribing a unit rectangle in a convex polygon. An axis-aligned unit rectangle is an axis-aligned rectangle whose horizontal sides are of length 1. A unit rectangle of orientation <em>θ</em> is a copy of an axis-aligned unit rectangle rotated by <em>θ</em> in counterclockwise direction. The goal is to find a largest unit rectangle inscribed in a convex polygon over all orientations in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. This optimization problem belongs to shape analysis, classification, and simplification, and they have applications in various cost-optimization problems.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000579/pdfft?md5=421deb79b0fe58ffb995ba93bffa3330&pid=1-s2.0-S0925772124000579-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Largest unit rectangles inscribed in a convex polygon\",\"authors\":\"Jaehoon Chung ,&nbsp;Sang Won Bae ,&nbsp;Chan-Su Shin ,&nbsp;Sang Duk Yoon ,&nbsp;Hee-Kap Ahn\",\"doi\":\"10.1016/j.comgeo.2024.102135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider an optimization problem of inscribing a unit rectangle in a convex polygon. An axis-aligned unit rectangle is an axis-aligned rectangle whose horizontal sides are of length 1. A unit rectangle of orientation <em>θ</em> is a copy of an axis-aligned unit rectangle rotated by <em>θ</em> in counterclockwise direction. The goal is to find a largest unit rectangle inscribed in a convex polygon over all orientations in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. This optimization problem belongs to shape analysis, classification, and simplification, and they have applications in various cost-optimization problems.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000579/pdfft?md5=421deb79b0fe58ffb995ba93bffa3330&pid=1-s2.0-S0925772124000579-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000579\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000579","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的优化问题是在一个凸多边形中嵌入一个单位矩形。轴对齐单位矩形是水平边长为 1 的轴对齐矩形,方向 θ 的单位矩形是逆时针方向旋转 θ 的轴对齐单位矩形的副本。我们的目标是在 [0,π) 范围内的所有方向上找到一个嵌入凸多边形的最大单位矩形。这个优化问题属于形状分析、分类和简化问题,在各种成本优化问题中都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Largest unit rectangles inscribed in a convex polygon

We consider an optimization problem of inscribing a unit rectangle in a convex polygon. An axis-aligned unit rectangle is an axis-aligned rectangle whose horizontal sides are of length 1. A unit rectangle of orientation θ is a copy of an axis-aligned unit rectangle rotated by θ in counterclockwise direction. The goal is to find a largest unit rectangle inscribed in a convex polygon over all orientations in [0,π). This optimization problem belongs to shape analysis, classification, and simplification, and they have applications in various cost-optimization problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信