Jaehoon Chung , Sang Won Bae , Chan-Su Shin , Sang Duk Yoon , Hee-Kap Ahn
{"title":"嵌入凸多边形的最大单位矩形","authors":"Jaehoon Chung , Sang Won Bae , Chan-Su Shin , Sang Duk Yoon , Hee-Kap Ahn","doi":"10.1016/j.comgeo.2024.102135","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an optimization problem of inscribing a unit rectangle in a convex polygon. An axis-aligned unit rectangle is an axis-aligned rectangle whose horizontal sides are of length 1. A unit rectangle of orientation <em>θ</em> is a copy of an axis-aligned unit rectangle rotated by <em>θ</em> in counterclockwise direction. The goal is to find a largest unit rectangle inscribed in a convex polygon over all orientations in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. This optimization problem belongs to shape analysis, classification, and simplification, and they have applications in various cost-optimization problems.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000579/pdfft?md5=421deb79b0fe58ffb995ba93bffa3330&pid=1-s2.0-S0925772124000579-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Largest unit rectangles inscribed in a convex polygon\",\"authors\":\"Jaehoon Chung , Sang Won Bae , Chan-Su Shin , Sang Duk Yoon , Hee-Kap Ahn\",\"doi\":\"10.1016/j.comgeo.2024.102135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider an optimization problem of inscribing a unit rectangle in a convex polygon. An axis-aligned unit rectangle is an axis-aligned rectangle whose horizontal sides are of length 1. A unit rectangle of orientation <em>θ</em> is a copy of an axis-aligned unit rectangle rotated by <em>θ</em> in counterclockwise direction. The goal is to find a largest unit rectangle inscribed in a convex polygon over all orientations in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. This optimization problem belongs to shape analysis, classification, and simplification, and they have applications in various cost-optimization problems.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000579/pdfft?md5=421deb79b0fe58ffb995ba93bffa3330&pid=1-s2.0-S0925772124000579-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000579\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000579","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Largest unit rectangles inscribed in a convex polygon
We consider an optimization problem of inscribing a unit rectangle in a convex polygon. An axis-aligned unit rectangle is an axis-aligned rectangle whose horizontal sides are of length 1. A unit rectangle of orientation θ is a copy of an axis-aligned unit rectangle rotated by θ in counterclockwise direction. The goal is to find a largest unit rectangle inscribed in a convex polygon over all orientations in . This optimization problem belongs to shape analysis, classification, and simplification, and they have applications in various cost-optimization problems.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.