Erik Cuevas , Mario Vásquez , Karla Avila , Alma Rodriguez , Daniel Zaldivar
{"title":"平衡个人和集体战略:元启发式优化的新方法","authors":"Erik Cuevas , Mario Vásquez , Karla Avila , Alma Rodriguez , Daniel Zaldivar","doi":"10.1016/j.matcom.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Metaheuristic approaches commonly disregard the individual strategies of each agent within a population, focusing primarily on the collective best solution discovered so far. While this methodology can yield promising results, it also has several significant drawbacks, such as premature convergence. This study introduces a new metaheuristic approach that emphasizes the balance between individual and social learning in agents. In this approach, each agent employs two strategies: an individual search technique performed by the agent and a social or collective strategy involving the best-known solution. The search strategy is considered a learning problem, and agents must adjust the use of both individual and social strategies accordingly. The equilibrium of this adjustment is determined by a counter randomly set for each agent, which determines the frequency of use invested in each strategy. This mechanism promotes diverse search patterns and fosters a dynamic and adaptive process, potentially improving problem-solving efficiency in intricate spaces. The proposed method was assessed by comparing it with several well-established metaheuristic algorithms using 21 test functions. The results demonstrate that the new method surpasses popular metaheuristic algorithms by offering superior solutions and attaining quicker convergence.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 322-346"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing individual and collective strategies: A new approach in metaheuristic optimization\",\"authors\":\"Erik Cuevas , Mario Vásquez , Karla Avila , Alma Rodriguez , Daniel Zaldivar\",\"doi\":\"10.1016/j.matcom.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metaheuristic approaches commonly disregard the individual strategies of each agent within a population, focusing primarily on the collective best solution discovered so far. While this methodology can yield promising results, it also has several significant drawbacks, such as premature convergence. This study introduces a new metaheuristic approach that emphasizes the balance between individual and social learning in agents. In this approach, each agent employs two strategies: an individual search technique performed by the agent and a social or collective strategy involving the best-known solution. The search strategy is considered a learning problem, and agents must adjust the use of both individual and social strategies accordingly. The equilibrium of this adjustment is determined by a counter randomly set for each agent, which determines the frequency of use invested in each strategy. This mechanism promotes diverse search patterns and fosters a dynamic and adaptive process, potentially improving problem-solving efficiency in intricate spaces. The proposed method was assessed by comparing it with several well-established metaheuristic algorithms using 21 test functions. The results demonstrate that the new method surpasses popular metaheuristic algorithms by offering superior solutions and attaining quicker convergence.</p></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"227 \",\"pages\":\"Pages 322-346\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003069\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003069","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Balancing individual and collective strategies: A new approach in metaheuristic optimization
Metaheuristic approaches commonly disregard the individual strategies of each agent within a population, focusing primarily on the collective best solution discovered so far. While this methodology can yield promising results, it also has several significant drawbacks, such as premature convergence. This study introduces a new metaheuristic approach that emphasizes the balance between individual and social learning in agents. In this approach, each agent employs two strategies: an individual search technique performed by the agent and a social or collective strategy involving the best-known solution. The search strategy is considered a learning problem, and agents must adjust the use of both individual and social strategies accordingly. The equilibrium of this adjustment is determined by a counter randomly set for each agent, which determines the frequency of use invested in each strategy. This mechanism promotes diverse search patterns and fosters a dynamic and adaptive process, potentially improving problem-solving efficiency in intricate spaces. The proposed method was assessed by comparing it with several well-established metaheuristic algorithms using 21 test functions. The results demonstrate that the new method surpasses popular metaheuristic algorithms by offering superior solutions and attaining quicker convergence.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.