Erik Cuevas , Mario Vásquez , Karla Avila , Alma Rodriguez , Daniel Zaldivar
{"title":"平衡个人和集体战略:元启发式优化的新方法","authors":"Erik Cuevas , Mario Vásquez , Karla Avila , Alma Rodriguez , Daniel Zaldivar","doi":"10.1016/j.matcom.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Metaheuristic approaches commonly disregard the individual strategies of each agent within a population, focusing primarily on the collective best solution discovered so far. While this methodology can yield promising results, it also has several significant drawbacks, such as premature convergence. This study introduces a new metaheuristic approach that emphasizes the balance between individual and social learning in agents. In this approach, each agent employs two strategies: an individual search technique performed by the agent and a social or collective strategy involving the best-known solution. The search strategy is considered a learning problem, and agents must adjust the use of both individual and social strategies accordingly. The equilibrium of this adjustment is determined by a counter randomly set for each agent, which determines the frequency of use invested in each strategy. This mechanism promotes diverse search patterns and fosters a dynamic and adaptive process, potentially improving problem-solving efficiency in intricate spaces. The proposed method was assessed by comparing it with several well-established metaheuristic algorithms using 21 test functions. The results demonstrate that the new method surpasses popular metaheuristic algorithms by offering superior solutions and attaining quicker convergence.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing individual and collective strategies: A new approach in metaheuristic optimization\",\"authors\":\"Erik Cuevas , Mario Vásquez , Karla Avila , Alma Rodriguez , Daniel Zaldivar\",\"doi\":\"10.1016/j.matcom.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metaheuristic approaches commonly disregard the individual strategies of each agent within a population, focusing primarily on the collective best solution discovered so far. While this methodology can yield promising results, it also has several significant drawbacks, such as premature convergence. This study introduces a new metaheuristic approach that emphasizes the balance between individual and social learning in agents. In this approach, each agent employs two strategies: an individual search technique performed by the agent and a social or collective strategy involving the best-known solution. The search strategy is considered a learning problem, and agents must adjust the use of both individual and social strategies accordingly. The equilibrium of this adjustment is determined by a counter randomly set for each agent, which determines the frequency of use invested in each strategy. This mechanism promotes diverse search patterns and fosters a dynamic and adaptive process, potentially improving problem-solving efficiency in intricate spaces. The proposed method was assessed by comparing it with several well-established metaheuristic algorithms using 21 test functions. The results demonstrate that the new method surpasses popular metaheuristic algorithms by offering superior solutions and attaining quicker convergence.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003069\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003069","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Balancing individual and collective strategies: A new approach in metaheuristic optimization
Metaheuristic approaches commonly disregard the individual strategies of each agent within a population, focusing primarily on the collective best solution discovered so far. While this methodology can yield promising results, it also has several significant drawbacks, such as premature convergence. This study introduces a new metaheuristic approach that emphasizes the balance between individual and social learning in agents. In this approach, each agent employs two strategies: an individual search technique performed by the agent and a social or collective strategy involving the best-known solution. The search strategy is considered a learning problem, and agents must adjust the use of both individual and social strategies accordingly. The equilibrium of this adjustment is determined by a counter randomly set for each agent, which determines the frequency of use invested in each strategy. This mechanism promotes diverse search patterns and fosters a dynamic and adaptive process, potentially improving problem-solving efficiency in intricate spaces. The proposed method was assessed by comparing it with several well-established metaheuristic algorithms using 21 test functions. The results demonstrate that the new method surpasses popular metaheuristic algorithms by offering superior solutions and attaining quicker convergence.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.