基于示踪剂的代谢组学分析芯片三维微血管模型中的一氧化氮代谢物。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kanchana Pandian, Luojiao Huang, Abidemi Junaid, Amy Harms, Anton Jan van Zonneveld, Thomas Hankemeier
{"title":"基于示踪剂的代谢组学分析芯片三维微血管模型中的一氧化氮代谢物。","authors":"Kanchana Pandian,&nbsp;Luojiao Huang,&nbsp;Abidemi Junaid,&nbsp;Amy Harms,&nbsp;Anton Jan van Zonneveld,&nbsp;Thomas Hankemeier","doi":"10.1096/fj.202400553R","DOIUrl":null,"url":null,"abstract":"<p>Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability—a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with <sup>13</sup>C<sub>6</sub>, <sup>15</sup>N<sub>4</sub>-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, <sup>13</sup>C<sub>6</sub>, <sup>15</sup>N<sub>3</sub> L-Citrulline and <sup>13</sup>C<sub>5</sub>, <sup>15</sup>N<sub>2</sub> L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the <sup>13</sup>C<sub>6</sub>, <sup>15</sup>N<sub>3</sub> L-Citrulline/<sup>13</sup>C<sub>5</sub>, <sup>15</sup>N<sub>2</sub> L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.</p>","PeriodicalId":50455,"journal":{"name":"FASEB Journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202400553R","citationCount":"0","resultStr":"{\"title\":\"Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessels-on-chip model\",\"authors\":\"Kanchana Pandian,&nbsp;Luojiao Huang,&nbsp;Abidemi Junaid,&nbsp;Amy Harms,&nbsp;Anton Jan van Zonneveld,&nbsp;Thomas Hankemeier\",\"doi\":\"10.1096/fj.202400553R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability—a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with <sup>13</sup>C<sub>6</sub>, <sup>15</sup>N<sub>4</sub>-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, <sup>13</sup>C<sub>6</sub>, <sup>15</sup>N<sub>3</sub> L-Citrulline and <sup>13</sup>C<sub>5</sub>, <sup>15</sup>N<sub>2</sub> L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the <sup>13</sup>C<sub>6</sub>, <sup>15</sup>N<sub>3</sub> L-Citrulline/<sup>13</sup>C<sub>5</sub>, <sup>15</sup>N<sub>2</sub> L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"FASEB Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202400553R\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202400553R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202400553R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内皮功能障碍是心血管疾病(CVD)的常见病,与糖尿病、高血压、肥胖、肾功能衰竭或高胆固醇血症等疾病有关,其特点是一氧化氮(NO)生物利用率降低--这是血管稳态的关键信号分子。目前有关内皮细胞合成一氧化氮的二维(2D)体外研究缺乏关键的层流剪切应力,而层流剪切应力是生理条件下调节一氧化氮生成酶--内皮一氧化氮合酶(eNOS)的重要因素。在这里,我们开发了一种基于示踪剂的代谢组学方法,利用质谱(MS)测量 NO 特异性代谢物,并利用二维和三维平台展示了流体流动对与 NO 合成相关的代谢参数的影响。具体来说,我们跟踪了稳定同位素标记的 NO 底物 L-Arginine 向 L-Citrulline 和 L-Ornithine 的转化,以确定 eNOS 的活性。我们用 13C6、15N4-L-精氨酸培养人冠状动脉内皮细胞(HCAECs),并用 eNOS 刺激剂、eNOS 抑制剂和精氨酸酶抑制剂处理,结果显示了明显的反应。对下游代谢物 13C6, 15N3 L-Citrulline 和 13C5, 15N2 L-Ornithine 的分析显示了不同的结果。此外,我们还评估了静态二维培养和三维微血管模型中双向和单向流体的 NO 代谢状况。与二维培养相比,我们的三维模型表现出了明显的效果,尤其是在暴露于 eNOS 刺激剂的微血管中,13C6、15N3 L-瓜氨酸/13C5、15N2 L-鸟氨酸的比率表明了这一点。结果表明,二维静态培养能模拟内皮功能障碍状态,而单向流体流动的三维模型能提供更有代表性的生理环境,为研究内皮功能障碍提供更好的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessels-on-chip model

Tracer-based metabolomics for profiling nitric oxide metabolites in a 3D microvessels-on-chip model

Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability—a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FASEB Journal
FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信