{"title":"宫颈粘液可用于宫颈癌代谢物筛查。","authors":"Rie Kawasaki, Iwao Kukimoto, Tetsuya Tsukamoto, Eiji Nishio, Aya Iwata, Takuma Fujii","doi":"10.1111/cas.16323","DOIUrl":null,"url":null,"abstract":"<p>Approximately 660,000 women are diagnosed with cervical cancer annually. Current screening options such as cytology or human papillomavirus testing have limitations, creating a need to identify more effective ancillary biomarkers for triage. Here, we evaluated whether metabolomic analysis of cervical mucus metabolism could be used to identify biomarkers of cervical intraepithelial neoplasia (CIN) and cervical cancer. The case–control group consisted of 181 CIN, 69 squamous cell carcinoma (SCC) patients, and 48 healthy controls in the primary cohort. We undertook metabolomic analyses using ultra-HPLC–tandem mass spectrometry. Univariate and multivariate analyses were carried out to profile metabolite characteristics, and receiver operating characteristic (ROC) analysis identified biomarker candidates. Five metabolites conferred the highest discriminatory power for SCC: oxidized glutathione (GSSG) (area under the ROC curve, 0.924; 95% confidence interval, 0.877–0.971), malic acid (0.914, 0.859–0.968), kynurenine (0.884, 0.823–0.945), GSSG/glutathione (GSH) (0.936, 0.892–0.979), and kynurenine/tryptophan (0.909, 0.856–0.961). Malic acid was the best marker for detection of CIN2 or worse (0.858, 0.793–0.922) and was a clinically useful metabolite. We confirmed the reproducibility of the results by validation cohort. Additionally, metabolomic analyses revealed eight pathways strongly associated with cervical neoplasia. Of these, only the tricarboxylic acid cycle was strongly associated with all CINs and cancer, indicating active energy production. Aberrant arginine metabolism by decreasing arginine and increasing citrulline might reduce tumor immunity. Changes in cysteine-methionine and GSH pathways might drive the initiation and progression of cervical cancer. These results suggest that metabolic analysis can identify ancillary biomarkers and could improve our understanding of the pathophysiological mechanisms underlying cervical neoplasia.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 11","pages":"3672-3681"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cervical mucus can be used for metabolite screening in cervical cancer\",\"authors\":\"Rie Kawasaki, Iwao Kukimoto, Tetsuya Tsukamoto, Eiji Nishio, Aya Iwata, Takuma Fujii\",\"doi\":\"10.1111/cas.16323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Approximately 660,000 women are diagnosed with cervical cancer annually. Current screening options such as cytology or human papillomavirus testing have limitations, creating a need to identify more effective ancillary biomarkers for triage. Here, we evaluated whether metabolomic analysis of cervical mucus metabolism could be used to identify biomarkers of cervical intraepithelial neoplasia (CIN) and cervical cancer. The case–control group consisted of 181 CIN, 69 squamous cell carcinoma (SCC) patients, and 48 healthy controls in the primary cohort. We undertook metabolomic analyses using ultra-HPLC–tandem mass spectrometry. Univariate and multivariate analyses were carried out to profile metabolite characteristics, and receiver operating characteristic (ROC) analysis identified biomarker candidates. Five metabolites conferred the highest discriminatory power for SCC: oxidized glutathione (GSSG) (area under the ROC curve, 0.924; 95% confidence interval, 0.877–0.971), malic acid (0.914, 0.859–0.968), kynurenine (0.884, 0.823–0.945), GSSG/glutathione (GSH) (0.936, 0.892–0.979), and kynurenine/tryptophan (0.909, 0.856–0.961). Malic acid was the best marker for detection of CIN2 or worse (0.858, 0.793–0.922) and was a clinically useful metabolite. We confirmed the reproducibility of the results by validation cohort. Additionally, metabolomic analyses revealed eight pathways strongly associated with cervical neoplasia. Of these, only the tricarboxylic acid cycle was strongly associated with all CINs and cancer, indicating active energy production. Aberrant arginine metabolism by decreasing arginine and increasing citrulline might reduce tumor immunity. Changes in cysteine-methionine and GSH pathways might drive the initiation and progression of cervical cancer. These results suggest that metabolic analysis can identify ancillary biomarkers and could improve our understanding of the pathophysiological mechanisms underlying cervical neoplasia.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 11\",\"pages\":\"3672-3681\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16323\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16323","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Cervical mucus can be used for metabolite screening in cervical cancer
Approximately 660,000 women are diagnosed with cervical cancer annually. Current screening options such as cytology or human papillomavirus testing have limitations, creating a need to identify more effective ancillary biomarkers for triage. Here, we evaluated whether metabolomic analysis of cervical mucus metabolism could be used to identify biomarkers of cervical intraepithelial neoplasia (CIN) and cervical cancer. The case–control group consisted of 181 CIN, 69 squamous cell carcinoma (SCC) patients, and 48 healthy controls in the primary cohort. We undertook metabolomic analyses using ultra-HPLC–tandem mass spectrometry. Univariate and multivariate analyses were carried out to profile metabolite characteristics, and receiver operating characteristic (ROC) analysis identified biomarker candidates. Five metabolites conferred the highest discriminatory power for SCC: oxidized glutathione (GSSG) (area under the ROC curve, 0.924; 95% confidence interval, 0.877–0.971), malic acid (0.914, 0.859–0.968), kynurenine (0.884, 0.823–0.945), GSSG/glutathione (GSH) (0.936, 0.892–0.979), and kynurenine/tryptophan (0.909, 0.856–0.961). Malic acid was the best marker for detection of CIN2 or worse (0.858, 0.793–0.922) and was a clinically useful metabolite. We confirmed the reproducibility of the results by validation cohort. Additionally, metabolomic analyses revealed eight pathways strongly associated with cervical neoplasia. Of these, only the tricarboxylic acid cycle was strongly associated with all CINs and cancer, indicating active energy production. Aberrant arginine metabolism by decreasing arginine and increasing citrulline might reduce tumor immunity. Changes in cysteine-methionine and GSH pathways might drive the initiation and progression of cervical cancer. These results suggest that metabolic analysis can identify ancillary biomarkers and could improve our understanding of the pathophysiological mechanisms underlying cervical neoplasia.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.