将 RNA 可编程基因调控作为针对肌肉萎缩症的一套通用原则。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Molecular Therapy Pub Date : 2024-11-06 Epub Date: 2024-08-22 DOI:10.1016/j.ymthe.2024.08.016
Sabrina Capelletti, Sofía C García Soto, Manuel A F V Gonçalves
{"title":"将 RNA 可编程基因调控作为针对肌肉萎缩症的一套通用原则。","authors":"Sabrina Capelletti, Sofía C García Soto, Manuel A F V Gonçalves","doi":"10.1016/j.ymthe.2024.08.016","DOIUrl":null,"url":null,"abstract":"<p><p>The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"3793-3807"},"PeriodicalIF":12.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573585/pdf/","citationCount":"0","resultStr":"{\"title\":\"On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies.\",\"authors\":\"Sabrina Capelletti, Sofía C García Soto, Manuel A F V Gonçalves\",\"doi\":\"10.1016/j.ymthe.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"3793-3807\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573585/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.08.016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.08.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

将 RNA 可编程 CRISPR 系统从基因组编辑转用于表观基因组编辑工具的步伐正在加快,包括在旨在解决人类疾病的研发工作中。这一势头源于人们对细胞生理学和疾病病因学背后的表观遗传因素和网络的了解日益加深,也源于人们越来越认识到,涉及由可编程核酸酶产生染色体断裂的基因组编辑原理容易导致不可预测的基因变化和结果。因此,工程化的 CRISPR 系统正成为合成效应域的多功能 DNA 靶向支架,这些效应域通过局部招募转录因子和染色质重塑复合物,寻求分别干扰隐性和显性疾病的功能缺失和功能获得过程。在概述了表观遗传药物和基于 CRISPR-Cas9 的激活和干扰平台之后,我们将介绍这些系统在肌肉萎缩症分子疗法方面的测试情况。最后,我们探讨了基于 CRISPR 的表观遗传调节技术的特性、障碍和应用机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies.

The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信