{"title":"METTL3 介导的 lncRNA HNF1A-AS1/HNF4A-AS1 m6A 修饰调节 CYP 的表达。","authors":"Yihang Yu, Jingya Wang, Zaihuan Xiong, Anqi Du, Xiaofei Wang, Yiting Wang, Shengna Han, Pei Wang, Lirong Zhang","doi":"10.1124/dmd.124.001832","DOIUrl":null,"url":null,"abstract":"<p><p>Interindividual variations in the expression and activity of cytochrome P450 enzymes (CYPs) led to lower therapeutic efficacy or adverse drug events. We previously demonstrated that CYPs are regulated by the long noncoding RNAs (lncRNAs) hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and HNF4A-AS1 via transcription factors (TFs) including hepatocyte nuclear factor 1a (HNF1A), hepatocyte nuclear factor 4a (HNF4A), and pregnane X receptor (PXR). However, the upstream mechanisms regulating HNF1A-AS1 and HNF4A-AS1 are poorly understood. N6-methyladenosine (m6A) is a prevalent epitranscriptomic modification in mammalian RNA. Therefore, the aim of this study was to investigate whether m6A modification regulates the expression of HNF1A-AS1 and HNF4A-AS1 and affects CYP expression in HepG2 and Huh7 cells. The methyltransferase-like 3 (METTL3) inhibitor, STM2457, significantly suppressed the expression of HNF1A-AS1 and induced HNF4A-AS1 expression. Consistent with this, a loss-of-function assay of METTL3 in the cell lines resulted in the downregulation of HNF1A-AS1 and its downstream HNF1A, PXR, and CYPs at the RNA level, as well as the downregulation of some CYPs proteins, and upregulation of HNF4A-AS1. The results of gain-of-function experiments showed the opposite trend. Mechanistically, subsequent RNA stability experiments confirmed that METTL3 affected the stability of both lncRNAs, but in opposite ways; that is, METTL3 reduced HNF1A-AS1 stability and increased HNF4A-AS1 stability. Rescue experiments confirmed that the regulation of METTL3 on TFs and CYPs may require the involvement of these two lncRNAs. Altogether, our study demonstrates that METTL3 is involved in TFs-mediated CYP expression by affecting HNF1A-AS1/HNF4A-AS1 stability. SIGNIFICANCE STATEMENT: Although the impact of long noncoding RNAs (lncRNAs) including hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and hepatocyte nuclear factor 4a antisense RNA 1 (HNF4A-AS1) on the downstream transcription factor (TF) and cytochrome P450 enzyme (CYP) expression is well studied, the upstream regulation of these two lncRNAs by methyltransferase-like 3 (METTL3) remains unexplored. This study reveals that METTL3 is involved in the regulation of lncRNA-TF-CYP expression by affecting the stability of HNF1A-AS1 and HNF4A-AS1 in HepG2 and Huh7 cells.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1104-1114"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methyltransferase Like-3-Mediated N6-Methyladenosine Modification of Long Noncoding RNA Hepatocyte Nuclear Factor 1a Antisense RNA 1/Hepatocyte Nuclear Factor 4a Antisense RNA 1 Regulates Cytochrome P450 Enzyme Expression.\",\"authors\":\"Yihang Yu, Jingya Wang, Zaihuan Xiong, Anqi Du, Xiaofei Wang, Yiting Wang, Shengna Han, Pei Wang, Lirong Zhang\",\"doi\":\"10.1124/dmd.124.001832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interindividual variations in the expression and activity of cytochrome P450 enzymes (CYPs) led to lower therapeutic efficacy or adverse drug events. We previously demonstrated that CYPs are regulated by the long noncoding RNAs (lncRNAs) hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and HNF4A-AS1 via transcription factors (TFs) including hepatocyte nuclear factor 1a (HNF1A), hepatocyte nuclear factor 4a (HNF4A), and pregnane X receptor (PXR). However, the upstream mechanisms regulating HNF1A-AS1 and HNF4A-AS1 are poorly understood. N6-methyladenosine (m6A) is a prevalent epitranscriptomic modification in mammalian RNA. Therefore, the aim of this study was to investigate whether m6A modification regulates the expression of HNF1A-AS1 and HNF4A-AS1 and affects CYP expression in HepG2 and Huh7 cells. The methyltransferase-like 3 (METTL3) inhibitor, STM2457, significantly suppressed the expression of HNF1A-AS1 and induced HNF4A-AS1 expression. Consistent with this, a loss-of-function assay of METTL3 in the cell lines resulted in the downregulation of HNF1A-AS1 and its downstream HNF1A, PXR, and CYPs at the RNA level, as well as the downregulation of some CYPs proteins, and upregulation of HNF4A-AS1. The results of gain-of-function experiments showed the opposite trend. Mechanistically, subsequent RNA stability experiments confirmed that METTL3 affected the stability of both lncRNAs, but in opposite ways; that is, METTL3 reduced HNF1A-AS1 stability and increased HNF4A-AS1 stability. Rescue experiments confirmed that the regulation of METTL3 on TFs and CYPs may require the involvement of these two lncRNAs. Altogether, our study demonstrates that METTL3 is involved in TFs-mediated CYP expression by affecting HNF1A-AS1/HNF4A-AS1 stability. SIGNIFICANCE STATEMENT: Although the impact of long noncoding RNAs (lncRNAs) including hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and hepatocyte nuclear factor 4a antisense RNA 1 (HNF4A-AS1) on the downstream transcription factor (TF) and cytochrome P450 enzyme (CYP) expression is well studied, the upstream regulation of these two lncRNAs by methyltransferase-like 3 (METTL3) remains unexplored. This study reveals that METTL3 is involved in the regulation of lncRNA-TF-CYP expression by affecting the stability of HNF1A-AS1 and HNF4A-AS1 in HepG2 and Huh7 cells.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\" \",\"pages\":\"1104-1114\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.124.001832\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001832","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Interindividual variations in the expression and activity of cytochrome P450 enzymes (CYPs) led to lower therapeutic efficacy or adverse drug events. We previously demonstrated that CYPs are regulated by the long noncoding RNAs (lncRNAs) hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and HNF4A-AS1 via transcription factors (TFs) including hepatocyte nuclear factor 1a (HNF1A), hepatocyte nuclear factor 4a (HNF4A), and pregnane X receptor (PXR). However, the upstream mechanisms regulating HNF1A-AS1 and HNF4A-AS1 are poorly understood. N6-methyladenosine (m6A) is a prevalent epitranscriptomic modification in mammalian RNA. Therefore, the aim of this study was to investigate whether m6A modification regulates the expression of HNF1A-AS1 and HNF4A-AS1 and affects CYP expression in HepG2 and Huh7 cells. The methyltransferase-like 3 (METTL3) inhibitor, STM2457, significantly suppressed the expression of HNF1A-AS1 and induced HNF4A-AS1 expression. Consistent with this, a loss-of-function assay of METTL3 in the cell lines resulted in the downregulation of HNF1A-AS1 and its downstream HNF1A, PXR, and CYPs at the RNA level, as well as the downregulation of some CYPs proteins, and upregulation of HNF4A-AS1. The results of gain-of-function experiments showed the opposite trend. Mechanistically, subsequent RNA stability experiments confirmed that METTL3 affected the stability of both lncRNAs, but in opposite ways; that is, METTL3 reduced HNF1A-AS1 stability and increased HNF4A-AS1 stability. Rescue experiments confirmed that the regulation of METTL3 on TFs and CYPs may require the involvement of these two lncRNAs. Altogether, our study demonstrates that METTL3 is involved in TFs-mediated CYP expression by affecting HNF1A-AS1/HNF4A-AS1 stability. SIGNIFICANCE STATEMENT: Although the impact of long noncoding RNAs (lncRNAs) including hepatocyte nuclear factor 1a antisense RNA 1 (HNF1A-AS1) and hepatocyte nuclear factor 4a antisense RNA 1 (HNF4A-AS1) on the downstream transcription factor (TF) and cytochrome P450 enzyme (CYP) expression is well studied, the upstream regulation of these two lncRNAs by methyltransferase-like 3 (METTL3) remains unexplored. This study reveals that METTL3 is involved in the regulation of lncRNA-TF-CYP expression by affecting the stability of HNF1A-AS1 and HNF4A-AS1 in HepG2 and Huh7 cells.
期刊介绍:
An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.