基于 D-阿洛糖生物传感器的 D-阿洛糖 3-酰亚胺酶半理性工程,可同时提高催化活性和热稳定性。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Zijie Li, Yangfan Hu, Cheng Yu, Kangqing Fei, Liqun Shen, Yishi Liu, Hideki Nakanishi
{"title":"基于 D-阿洛糖生物传感器的 D-阿洛糖 3-酰亚胺酶半理性工程,可同时提高催化活性和热稳定性。","authors":"Zijie Li,&nbsp;Yangfan Hu,&nbsp;Cheng Yu,&nbsp;Kangqing Fei,&nbsp;Liqun Shen,&nbsp;Yishi Liu,&nbsp;Hideki Nakanishi","doi":"10.1002/biot.202400280","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>D-Allulose is one of the most well-known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D-allulose production is the conversion from D-fructose catalyzed by D-allulose 3-epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild-type DAEase, D-allulose biosensor was adopted in this study to develop a convenient and efficient method for high-throughput screening of DAEase variants.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The catalytic activity and thermostability of DAEase from <i>Caballeronia insecticola</i> were simultaneously improved by semi-rational molecular modification. Compared with the wild-type enzyme, DAEase<sup>S37N/F157Y</sup> variant exhibited 14.7% improvement in the catalytic activity and the half-time value (<i>t</i><sub>1/2</sub>) at 65°C increased from 1.60 to 27.56 h by 17.23-fold. To our delight, the conversion rate of D-allulose was 33.6% from 500-g L<sup>−1</sup> D-fructose in 1 h by <i>Bacillus subtilis</i> WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>All these results indicated that the DAEase<sup>S37N/F157Y</sup> variant would be a potential candidate for the industrial production of D-allulose.</p>\n </section>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor\",\"authors\":\"Zijie Li,&nbsp;Yangfan Hu,&nbsp;Cheng Yu,&nbsp;Kangqing Fei,&nbsp;Liqun Shen,&nbsp;Yishi Liu,&nbsp;Hideki Nakanishi\",\"doi\":\"10.1002/biot.202400280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>D-Allulose is one of the most well-known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D-allulose production is the conversion from D-fructose catalyzed by D-allulose 3-epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild-type DAEase, D-allulose biosensor was adopted in this study to develop a convenient and efficient method for high-throughput screening of DAEase variants.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The catalytic activity and thermostability of DAEase from <i>Caballeronia insecticola</i> were simultaneously improved by semi-rational molecular modification. Compared with the wild-type enzyme, DAEase<sup>S37N/F157Y</sup> variant exhibited 14.7% improvement in the catalytic activity and the half-time value (<i>t</i><sub>1/2</sub>) at 65°C increased from 1.60 to 27.56 h by 17.23-fold. To our delight, the conversion rate of D-allulose was 33.6% from 500-g L<sup>−1</sup> D-fructose in 1 h by <i>Bacillus subtilis</i> WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>All these results indicated that the DAEase<sup>S37N/F157Y</sup> variant would be a potential candidate for the industrial production of D-allulose.</p>\\n </section>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400280\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400280","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:D- 阿洛糖是最著名的稀有糖类之一,广泛应用于食品、化妆品和制药行业。生产 D-阿洛糖最常用的方法是在 D-阿洛糖 3-酰亚胺酶(DAEase)的催化下从 D-果糖转化而来。针对野生型DAEase普遍存在的催化效率低、热稳定性差的问题,本研究采用D-阿洛糖生物传感器,建立了一种方便、高效的DAEase变体高通量筛选方法:结果:通过半合理的分子改造,Caballeronia insecticola DAEase的催化活性和耐热性同时得到了提高。与野生型相比,DAEaseS37N/F157Y变体的催化活性提高了14.7%,65°C时的半衰期(t1/2)从1.60小时提高到27.56小时,提高了17.23倍。令我们欣喜的是,表达该 DAEase 变体的枯草芽孢杆菌 WB800 全细胞在 1 小时内从 500 g L-1 D-果糖中转化出 33.6% 的 D-阿洛糖。此外,还对细胞固定化的实用性进行了评估,固定化细胞的相对活性从第二周期到第七周期都保持在 80% 以上:所有这些结果表明,DAEaseS37N/F157Y 变体将成为工业化生产 D-纤维素的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor

Background

D-Allulose is one of the most well-known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D-allulose production is the conversion from D-fructose catalyzed by D-allulose 3-epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild-type DAEase, D-allulose biosensor was adopted in this study to develop a convenient and efficient method for high-throughput screening of DAEase variants.

Results

The catalytic activity and thermostability of DAEase from Caballeronia insecticola were simultaneously improved by semi-rational molecular modification. Compared with the wild-type enzyme, DAEaseS37N/F157Y variant exhibited 14.7% improvement in the catalytic activity and the half-time value (t1/2) at 65°C increased from 1.60 to 27.56 h by 17.23-fold. To our delight, the conversion rate of D-allulose was 33.6% from 500-g L−1 D-fructose in 1 h by Bacillus subtilis WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle.

Conclusion

All these results indicated that the DAEaseS37N/F157Y variant would be a potential candidate for the industrial production of D-allulose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信