微藻-生物材料混合系统的生物医学应用。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Yize Li, Yali Fan, Shuo Ye, Lingyun Xu, Gezhen Wang, Yuli Lu, Suxiang Huang, Yingying Zhang
{"title":"微藻-生物材料混合系统的生物医学应用。","authors":"Yize Li,&nbsp;Yali Fan,&nbsp;Shuo Ye,&nbsp;Lingyun Xu,&nbsp;Gezhen Wang,&nbsp;Yuli Lu,&nbsp;Suxiang Huang,&nbsp;Yingying Zhang","doi":"10.1002/biot.202400325","DOIUrl":null,"url":null,"abstract":"<p>Microalgae are a group of microorganisms containing chlorophyll A, which are highly photosynthetic and rich in nutrients. And they can produce multiple bioactive substances (peptides, proteins, polysaccharides, and fatty acids) for biomedical applications. Despite the unique advantages of microalgae-based biotherapy, the insufficient treatment efficiency limits its further application. With the development of nanotechnology, the combination of microalgae and biomaterials can improve therapeutic efficacies, which has attracted increasing attention. In this microalgal-biomaterials hybrid system, biomaterials with excellent optical and magnetic properties play an important role in biological therapy. Microalgae, as a natural vehicle, can increase oxygen content and alleviate hypoxia in diseased areas, further enhancing therapeutic effects. In this review, the synergistic therapeutic effects of microalgal-biomaterials hybrid system in different diseases (cancer, myocardial infarction, ischemia stroke, chronic infection, and intestinal diseases) are comprehensively summarized.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomedical application of microalgal-biomaterials hybrid system\",\"authors\":\"Yize Li,&nbsp;Yali Fan,&nbsp;Shuo Ye,&nbsp;Lingyun Xu,&nbsp;Gezhen Wang,&nbsp;Yuli Lu,&nbsp;Suxiang Huang,&nbsp;Yingying Zhang\",\"doi\":\"10.1002/biot.202400325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microalgae are a group of microorganisms containing chlorophyll A, which are highly photosynthetic and rich in nutrients. And they can produce multiple bioactive substances (peptides, proteins, polysaccharides, and fatty acids) for biomedical applications. Despite the unique advantages of microalgae-based biotherapy, the insufficient treatment efficiency limits its further application. With the development of nanotechnology, the combination of microalgae and biomaterials can improve therapeutic efficacies, which has attracted increasing attention. In this microalgal-biomaterials hybrid system, biomaterials with excellent optical and magnetic properties play an important role in biological therapy. Microalgae, as a natural vehicle, can increase oxygen content and alleviate hypoxia in diseased areas, further enhancing therapeutic effects. In this review, the synergistic therapeutic effects of microalgal-biomaterials hybrid system in different diseases (cancer, myocardial infarction, ischemia stroke, chronic infection, and intestinal diseases) are comprehensively summarized.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400325\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400325","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

微藻是一类含有叶绿素 A 的微生物,具有高度光合作用和丰富的营养物质。它们能产生多种生物活性物质(肽、蛋白质、多糖和脂肪酸),可用于生物医学领域。尽管微藻生物疗法具有独特的优势,但由于治疗效率不高,限制了其进一步应用。随着纳米技术的发展,微藻与生物材料的结合可以提高治疗效果,这已引起越来越多的关注。在微藻-生物材料混合系统中,具有优异光学和磁学特性的生物材料在生物治疗中发挥着重要作用。微藻作为一种天然载体,可以增加氧含量,缓解患病区域的缺氧状况,进一步提高治疗效果。本综述全面总结了微藻-生物材料混合系统在不同疾病(癌症、心肌梗塞、缺血性中风、慢性感染和肠道疾病)中的协同治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biomedical application of microalgal-biomaterials hybrid system

Biomedical application of microalgal-biomaterials hybrid system

Microalgae are a group of microorganisms containing chlorophyll A, which are highly photosynthetic and rich in nutrients. And they can produce multiple bioactive substances (peptides, proteins, polysaccharides, and fatty acids) for biomedical applications. Despite the unique advantages of microalgae-based biotherapy, the insufficient treatment efficiency limits its further application. With the development of nanotechnology, the combination of microalgae and biomaterials can improve therapeutic efficacies, which has attracted increasing attention. In this microalgal-biomaterials hybrid system, biomaterials with excellent optical and magnetic properties play an important role in biological therapy. Microalgae, as a natural vehicle, can increase oxygen content and alleviate hypoxia in diseased areas, further enhancing therapeutic effects. In this review, the synergistic therapeutic effects of microalgal-biomaterials hybrid system in different diseases (cancer, myocardial infarction, ischemia stroke, chronic infection, and intestinal diseases) are comprehensively summarized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信