平面引力波引起的光的法拉第效应

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Andrey A. Shoom
{"title":"平面引力波引起的光的法拉第效应","authors":"Andrey A. Shoom","doi":"10.1007/s10714-024-03283-z","DOIUrl":null,"url":null,"abstract":"<div><p>A gravitational field can cause a rotation of the polarisation vector of light. This phenomenon is known as the gravitational Faraday effect. We study the gravitational Faraday effect of linearly polarised light propagating in the gravitational field of a weak plane gravitational wave (GW) with “<span>\\(+\\)</span>\", “<span>\\(\\times \\)</span>\", and elliptical polarisation modes. The corresponding gravitational Faraday rotation angle is proportional to the GW amplitude and to the squared distance traveled by the light and inversely proportional to the GW squared wavelength. The Faraday rotation is maximal if the light propagates along directions perpendicular to the GW propagation and tilted by <span>\\(\\pi /4\\)</span> to the directions of its polarisation. There is no a gravitational Faraday rotation when light and a GW propagate along the same directions, or when light propagates along directions of a GW polarisation. Helicity of an elliptically polarised GW gives cubic order contribution to the Faraday rotation.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03283-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Faraday effect of light caused by plane gravitational wave\",\"authors\":\"Andrey A. Shoom\",\"doi\":\"10.1007/s10714-024-03283-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A gravitational field can cause a rotation of the polarisation vector of light. This phenomenon is known as the gravitational Faraday effect. We study the gravitational Faraday effect of linearly polarised light propagating in the gravitational field of a weak plane gravitational wave (GW) with “<span>\\\\(+\\\\)</span>\\\", “<span>\\\\(\\\\times \\\\)</span>\\\", and elliptical polarisation modes. The corresponding gravitational Faraday rotation angle is proportional to the GW amplitude and to the squared distance traveled by the light and inversely proportional to the GW squared wavelength. The Faraday rotation is maximal if the light propagates along directions perpendicular to the GW propagation and tilted by <span>\\\\(\\\\pi /4\\\\)</span> to the directions of its polarisation. There is no a gravitational Faraday rotation when light and a GW propagate along the same directions, or when light propagates along directions of a GW polarisation. Helicity of an elliptically polarised GW gives cubic order contribution to the Faraday rotation.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"56 8\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-024-03283-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03283-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03283-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

引力场会导致光的偏振矢量旋转。这种现象被称为引力法拉第效应。我们研究了在具有"\(+\)"、"\(\times \) "和椭圆偏振模式的弱平面引力波(GW)引力场中传播的线性偏振光的引力法拉第效应。相应的引力法拉第旋转角与引力波振幅和光传播距离的平方成正比,与引力波波长的平方成反比。如果光的传播方向垂直于全球大气环流的传播方向,并且与其偏振方向呈(\pi /4\)倾斜,则法拉第旋转角度最大。如果光和地球静止轨道沿相同的方向传播,或者光沿地球静止轨道的偏振方向传播,则不存在引力法拉第旋转。椭圆偏振全球定位系统的螺旋性会对法拉第旋转产生立方阶贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Faraday effect of light caused by plane gravitational wave

Faraday effect of light caused by plane gravitational wave

A gravitational field can cause a rotation of the polarisation vector of light. This phenomenon is known as the gravitational Faraday effect. We study the gravitational Faraday effect of linearly polarised light propagating in the gravitational field of a weak plane gravitational wave (GW) with “\(+\)", “\(\times \)", and elliptical polarisation modes. The corresponding gravitational Faraday rotation angle is proportional to the GW amplitude and to the squared distance traveled by the light and inversely proportional to the GW squared wavelength. The Faraday rotation is maximal if the light propagates along directions perpendicular to the GW propagation and tilted by \(\pi /4\) to the directions of its polarisation. There is no a gravitational Faraday rotation when light and a GW propagate along the same directions, or when light propagates along directions of a GW polarisation. Helicity of an elliptically polarised GW gives cubic order contribution to the Faraday rotation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信