基于电磁传播建模的近场定位和姿态传感

Ang Chen;Li Chen;Yunfei Chen;Nan Zhao;Changsheng You
{"title":"基于电磁传播建模的近场定位和姿态传感","authors":"Ang Chen;Li Chen;Yunfei Chen;Nan Zhao;Changsheng You","doi":"10.1109/JSAC.2024.3413981","DOIUrl":null,"url":null,"abstract":"Positioning and sensing over wireless networks are imperative for many emerging applications. However, since traditional wireless channel models over-simplify the user equipment (UE) as a point target, they cannot be used for sensing the attitude of the UE, which is typically described by the spatial orientation. In this paper, a comprehensive electromagnetic propagation modeling (EPM) based on electromagnetic theory is developed to precisely model the near-field channel. For the noise-free case, the EPM model establishes the non-linear functional dependence of observed signals on both the position and attitude of the UE. To address the difficulty in the non-linear coupling, we first propose to divide the distance domain into three regions, separated by the defined Phase ambiguity distance and Spacing constraint distance. Then, for each region, we obtain the closed-form solutions for joint position and attitude estimation with low complexity. Next, to investigate the impact of random noise on the joint estimation performance, the Ziv-Zakai bound (ZZB) is derived to yield useful insights. The expected Cramér-Rao bound (ECRB) is further provided to obtain the simplified closed-form expressions for the performance lower bounds. Our numerical results demonstrate that the derived ZZB can provide accurate predictions of the performance of estimators in all signal-to-noise ratio (SNR) regimes. More importantly, we achieve the millimeter-level accuracy in position estimation and attain the 0.1-level accuracy in attitude estimation.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Field Positioning and Attitude Sensing Based on Electromagnetic Propagation Modeling\",\"authors\":\"Ang Chen;Li Chen;Yunfei Chen;Nan Zhao;Changsheng You\",\"doi\":\"10.1109/JSAC.2024.3413981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positioning and sensing over wireless networks are imperative for many emerging applications. However, since traditional wireless channel models over-simplify the user equipment (UE) as a point target, they cannot be used for sensing the attitude of the UE, which is typically described by the spatial orientation. In this paper, a comprehensive electromagnetic propagation modeling (EPM) based on electromagnetic theory is developed to precisely model the near-field channel. For the noise-free case, the EPM model establishes the non-linear functional dependence of observed signals on both the position and attitude of the UE. To address the difficulty in the non-linear coupling, we first propose to divide the distance domain into three regions, separated by the defined Phase ambiguity distance and Spacing constraint distance. Then, for each region, we obtain the closed-form solutions for joint position and attitude estimation with low complexity. Next, to investigate the impact of random noise on the joint estimation performance, the Ziv-Zakai bound (ZZB) is derived to yield useful insights. The expected Cramér-Rao bound (ECRB) is further provided to obtain the simplified closed-form expressions for the performance lower bounds. Our numerical results demonstrate that the derived ZZB can provide accurate predictions of the performance of estimators in all signal-to-noise ratio (SNR) regimes. More importantly, we achieve the millimeter-level accuracy in position estimation and attain the 0.1-level accuracy in attitude estimation.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556596/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10556596/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线网络上的定位和传感对于许多新兴应用来说都势在必行。然而,由于传统的无线信道模型将用户设备 (UE) 过度简化为一个点目标,因此无法用于感知 UE 的姿态,而姿态通常由空间方位来描述。本文以电磁理论为基础,建立了一个全面的电磁传播模型(EPM),以精确模拟近场信道。对于无噪声情况,EPM 模型确定了观测信号与 UE 位置和姿态的非线性函数关系。为了解决非线性耦合的难题,我们首先建议将距离域划分为三个区域,由定义的相位模糊距离和间距约束距离分隔。然后,针对每个区域,我们以较低的复杂度获得位置和姿态联合估计的闭式解。接下来,为了研究随机噪声对联合估计性能的影响,我们推导出了 Ziv-Zakai 约束 (ZZB),以获得有用的见解。还进一步提供了预期克拉梅尔-拉奥约束(ECRB),以获得性能下限的简化闭式表达式。我们的数值结果表明,推导出的 ZZB 可以准确预测估计器在所有信噪比(SNR)情况下的性能。更重要的是,我们在位置估计方面达到了毫米级精度,在姿态估计方面达到了 0.1 级精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-Field Positioning and Attitude Sensing Based on Electromagnetic Propagation Modeling
Positioning and sensing over wireless networks are imperative for many emerging applications. However, since traditional wireless channel models over-simplify the user equipment (UE) as a point target, they cannot be used for sensing the attitude of the UE, which is typically described by the spatial orientation. In this paper, a comprehensive electromagnetic propagation modeling (EPM) based on electromagnetic theory is developed to precisely model the near-field channel. For the noise-free case, the EPM model establishes the non-linear functional dependence of observed signals on both the position and attitude of the UE. To address the difficulty in the non-linear coupling, we first propose to divide the distance domain into three regions, separated by the defined Phase ambiguity distance and Spacing constraint distance. Then, for each region, we obtain the closed-form solutions for joint position and attitude estimation with low complexity. Next, to investigate the impact of random noise on the joint estimation performance, the Ziv-Zakai bound (ZZB) is derived to yield useful insights. The expected Cramér-Rao bound (ECRB) is further provided to obtain the simplified closed-form expressions for the performance lower bounds. Our numerical results demonstrate that the derived ZZB can provide accurate predictions of the performance of estimators in all signal-to-noise ratio (SNR) regimes. More importantly, we achieve the millimeter-level accuracy in position estimation and attain the 0.1-level accuracy in attitude estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信