Zu-Sheng Tan , Eric W.K. See-To , Kwan-Yeung Lee , Hong-Ning Dai , Man-Leung Wong
{"title":"为主动维护物联网赋能的多地点智能城市设施而进行的隐私保护联合学习","authors":"Zu-Sheng Tan , Eric W.K. See-To , Kwan-Yeung Lee , Hong-Ning Dai , Man-Leung Wong","doi":"10.1016/j.jnca.2024.103996","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread adoption of the Internet of Things (IoT) and deep learning (DL) have facilitated a social paradigm shift towards smart cities, accelerating the rapid construction of smart facilities. However, newly constructed facilities often lack the necessary data to learn any predictive models, preventing them from being truly smart. Additionally, data collected from different facilities is heterogeneous or may even be privacy-sensitive, making it harder to train proactive maintenance management (PMM) models that are robust to provide services across them. These properties impose challenges that have not been adequately addressed, especially at the city level. In this paper, we present a privacy-preserving, federated learning (FL) framework that can assist management personnel to proactively manage the maintenance schedule of IoT-empowered facilities in different organizations through analyzing heterogeneous IoT data. Our framework consists of (1) an FL platform implemented with fully homomorphic encryption (FHE) for training DL models with time-series heterogeneous IoT data and (2) an FL-based long short-term memory autoencoder model, namely FedLSTMA, for facility-level PMM. To evaluate our framework, we did extensive simulations with real-world data harvested from IoT-empowered public toilets, demonstrating that the DL-based FedLSTMA outperformed other traditional machine learning (ML) algorithms and had a high level of generalizability and capabilities of transferring knowledge from existing facilities to newly constructed facilities under the situation of huge data heterogeneity. We believe that our framework can be a potential solution for overcoming the challenges inherent in managing and maintaining other smart facilities, ultimately contributing to the effective realization of smart cities.</p></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"231 ","pages":"Article 103996"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving federated learning for proactive maintenance of IoT-empowered multi-location smart city facilities\",\"authors\":\"Zu-Sheng Tan , Eric W.K. See-To , Kwan-Yeung Lee , Hong-Ning Dai , Man-Leung Wong\",\"doi\":\"10.1016/j.jnca.2024.103996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The widespread adoption of the Internet of Things (IoT) and deep learning (DL) have facilitated a social paradigm shift towards smart cities, accelerating the rapid construction of smart facilities. However, newly constructed facilities often lack the necessary data to learn any predictive models, preventing them from being truly smart. Additionally, data collected from different facilities is heterogeneous or may even be privacy-sensitive, making it harder to train proactive maintenance management (PMM) models that are robust to provide services across them. These properties impose challenges that have not been adequately addressed, especially at the city level. In this paper, we present a privacy-preserving, federated learning (FL) framework that can assist management personnel to proactively manage the maintenance schedule of IoT-empowered facilities in different organizations through analyzing heterogeneous IoT data. Our framework consists of (1) an FL platform implemented with fully homomorphic encryption (FHE) for training DL models with time-series heterogeneous IoT data and (2) an FL-based long short-term memory autoencoder model, namely FedLSTMA, for facility-level PMM. To evaluate our framework, we did extensive simulations with real-world data harvested from IoT-empowered public toilets, demonstrating that the DL-based FedLSTMA outperformed other traditional machine learning (ML) algorithms and had a high level of generalizability and capabilities of transferring knowledge from existing facilities to newly constructed facilities under the situation of huge data heterogeneity. We believe that our framework can be a potential solution for overcoming the challenges inherent in managing and maintaining other smart facilities, ultimately contributing to the effective realization of smart cities.</p></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"231 \",\"pages\":\"Article 103996\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524001735\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524001735","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Privacy-preserving federated learning for proactive maintenance of IoT-empowered multi-location smart city facilities
The widespread adoption of the Internet of Things (IoT) and deep learning (DL) have facilitated a social paradigm shift towards smart cities, accelerating the rapid construction of smart facilities. However, newly constructed facilities often lack the necessary data to learn any predictive models, preventing them from being truly smart. Additionally, data collected from different facilities is heterogeneous or may even be privacy-sensitive, making it harder to train proactive maintenance management (PMM) models that are robust to provide services across them. These properties impose challenges that have not been adequately addressed, especially at the city level. In this paper, we present a privacy-preserving, federated learning (FL) framework that can assist management personnel to proactively manage the maintenance schedule of IoT-empowered facilities in different organizations through analyzing heterogeneous IoT data. Our framework consists of (1) an FL platform implemented with fully homomorphic encryption (FHE) for training DL models with time-series heterogeneous IoT data and (2) an FL-based long short-term memory autoencoder model, namely FedLSTMA, for facility-level PMM. To evaluate our framework, we did extensive simulations with real-world data harvested from IoT-empowered public toilets, demonstrating that the DL-based FedLSTMA outperformed other traditional machine learning (ML) algorithms and had a high level of generalizability and capabilities of transferring knowledge from existing facilities to newly constructed facilities under the situation of huge data heterogeneity. We believe that our framework can be a potential solution for overcoming the challenges inherent in managing and maintaining other smart facilities, ultimately contributing to the effective realization of smart cities.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.