{"title":"利用 GPS 数据预测指定区域的网络质量","authors":"Onur Sahin , Vanlin Sathya","doi":"10.1016/j.jnca.2024.104002","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a groundbreaking method for predicting network quality in LTE and 5G environments using only GPS data, focusing on pinpointing specific locations within a designated area to determine network quality as either good or poor. By leveraging machine learning algorithms, we have successfully demonstrated that geographical location can be a key indicator of network performance. Our research involved initially classifying network quality using traditional signal strength metrics and then shifting to rely exclusively on GPS coordinates for prediction. Employing a variety of classifiers, including Decision Tree, Random Forest, Gradient Boosting and K-Nearest Neighbors, we uncovered notable correlations between location data and network quality. This methodology provides network operators with a cost-effective and efficient tool for identifying and addressing network quality issues based on geographic insights. Additionally, we explored the potential implications of our study in various use cases, including healthcare, education, and urban industrialization, highlighting its versatility across different sectors. Our findings pave the way for innovative network management strategies, especially critical in the contexts of both LTE and the rapidly evolving landscape of 5G technology.</p></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"231 ","pages":"Article 104002"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network quality prediction in a designated area using GPS data\",\"authors\":\"Onur Sahin , Vanlin Sathya\",\"doi\":\"10.1016/j.jnca.2024.104002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a groundbreaking method for predicting network quality in LTE and 5G environments using only GPS data, focusing on pinpointing specific locations within a designated area to determine network quality as either good or poor. By leveraging machine learning algorithms, we have successfully demonstrated that geographical location can be a key indicator of network performance. Our research involved initially classifying network quality using traditional signal strength metrics and then shifting to rely exclusively on GPS coordinates for prediction. Employing a variety of classifiers, including Decision Tree, Random Forest, Gradient Boosting and K-Nearest Neighbors, we uncovered notable correlations between location data and network quality. This methodology provides network operators with a cost-effective and efficient tool for identifying and addressing network quality issues based on geographic insights. Additionally, we explored the potential implications of our study in various use cases, including healthcare, education, and urban industrialization, highlighting its versatility across different sectors. Our findings pave the way for innovative network management strategies, especially critical in the contexts of both LTE and the rapidly evolving landscape of 5G technology.</p></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"231 \",\"pages\":\"Article 104002\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524001796\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524001796","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Network quality prediction in a designated area using GPS data
This study introduces a groundbreaking method for predicting network quality in LTE and 5G environments using only GPS data, focusing on pinpointing specific locations within a designated area to determine network quality as either good or poor. By leveraging machine learning algorithms, we have successfully demonstrated that geographical location can be a key indicator of network performance. Our research involved initially classifying network quality using traditional signal strength metrics and then shifting to rely exclusively on GPS coordinates for prediction. Employing a variety of classifiers, including Decision Tree, Random Forest, Gradient Boosting and K-Nearest Neighbors, we uncovered notable correlations between location data and network quality. This methodology provides network operators with a cost-effective and efficient tool for identifying and addressing network quality issues based on geographic insights. Additionally, we explored the potential implications of our study in various use cases, including healthcare, education, and urban industrialization, highlighting its versatility across different sectors. Our findings pave the way for innovative network management strategies, especially critical in the contexts of both LTE and the rapidly evolving landscape of 5G technology.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.