Wang Xiao , Lingyu Feng , Fang Yang , Kai Liu , Meng Zhao
{"title":"赫勒-肖流中自相似模式的特征值问题","authors":"Wang Xiao , Lingyu Feng , Fang Yang , Kai Liu , Meng Zhao","doi":"10.1016/j.physd.2024.134319","DOIUrl":null,"url":null,"abstract":"<div><p>Hele-Shaw problems are prototypes to study the interface dynamics. Linear theory suggests the existence of self-similar patterns in a Hele-Shaw flow. That is, with a specific injection flux the interface shape remains unchanged while its size increases. In this paper, we explore the existence of self-similar patterns in the nonlinear regime and develop a nonlinear theory characterizing their fundamental features. Using a boundary integral formulation, we pose the question of self-similarity as a generalized nonlinear eigenvalue problem, involving two nonlinear integral operators. The nonlinear flux constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is the eigenvalue and the corresponding self-similar pattern <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> is the eigenvector. We develop a quasi-Newton method to solve the problem and show the existence of nonlinear shapes with <span><math><mi>k</mi></math></span>-fold dominated symmetries. Nonlinear results are compared with the established linear theory, demonstrating a divergence between the two due to non-linear effects absent in the linear stability analysis. Further, we investigate how sensitive the shape of the interface is to the viscosity. Additionally, we conduct numerous numerical experiments using a wide range of initial guesses and initial flux constants. Through these experiments, one is able to obtain a diagram of self-similar shapes and the corresponding flux. It could be used to verify possible self-similar shapes with a proper initial guess and initial flux constant. Our results go beyond the predictions of linear theory and establish a bridge between the linear theory and simulations.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"469 ","pages":"Article 134319"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eigenvalue problem for self-similar patterns in Hele-Shaw flows\",\"authors\":\"Wang Xiao , Lingyu Feng , Fang Yang , Kai Liu , Meng Zhao\",\"doi\":\"10.1016/j.physd.2024.134319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hele-Shaw problems are prototypes to study the interface dynamics. Linear theory suggests the existence of self-similar patterns in a Hele-Shaw flow. That is, with a specific injection flux the interface shape remains unchanged while its size increases. In this paper, we explore the existence of self-similar patterns in the nonlinear regime and develop a nonlinear theory characterizing their fundamental features. Using a boundary integral formulation, we pose the question of self-similarity as a generalized nonlinear eigenvalue problem, involving two nonlinear integral operators. The nonlinear flux constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is the eigenvalue and the corresponding self-similar pattern <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> is the eigenvector. We develop a quasi-Newton method to solve the problem and show the existence of nonlinear shapes with <span><math><mi>k</mi></math></span>-fold dominated symmetries. Nonlinear results are compared with the established linear theory, demonstrating a divergence between the two due to non-linear effects absent in the linear stability analysis. Further, we investigate how sensitive the shape of the interface is to the viscosity. Additionally, we conduct numerous numerical experiments using a wide range of initial guesses and initial flux constants. Through these experiments, one is able to obtain a diagram of self-similar shapes and the corresponding flux. It could be used to verify possible self-similar shapes with a proper initial guess and initial flux constant. Our results go beyond the predictions of linear theory and establish a bridge between the linear theory and simulations.</p></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"469 \",\"pages\":\"Article 134319\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002707\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002707","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
赫勒-肖问题是研究界面动力学的原型。线性理论表明,在赫勒-肖流中存在自相似模式。也就是说,在特定的注入流量下,界面形状保持不变,而界面尺寸却在增大。在本文中,我们探讨了自相似模式在非线性机制中的存在,并发展了描述其基本特征的非线性理论。利用边界积分公式,我们将自相似性问题视为一个涉及两个非线性积分算子的广义非线性特征值问题。非线性通量常数 Cf 是特征值,相应的自相似模式 x̃ 是特征向量。我们开发了一种准牛顿方法来解决这个问题,并证明了具有 k 倍对称性的非线性形状的存在。我们将非线性结果与已建立的线性理论进行了比较,结果表明,由于线性稳定性分析中不存在的非线性效应,两者之间存在分歧。此外,我们还研究了界面形状对粘度的敏感程度。此外,我们还使用各种初始猜测和初始通量常数进行了大量数值实验。通过这些实验,我们可以获得自相似形状图和相应的通量。它可以用来验证在适当的初始猜测和初始通量常数下可能出现的自相似形状。我们的结果超越了线性理论的预测,在线性理论和模拟之间架起了一座桥梁。
An eigenvalue problem for self-similar patterns in Hele-Shaw flows
Hele-Shaw problems are prototypes to study the interface dynamics. Linear theory suggests the existence of self-similar patterns in a Hele-Shaw flow. That is, with a specific injection flux the interface shape remains unchanged while its size increases. In this paper, we explore the existence of self-similar patterns in the nonlinear regime and develop a nonlinear theory characterizing their fundamental features. Using a boundary integral formulation, we pose the question of self-similarity as a generalized nonlinear eigenvalue problem, involving two nonlinear integral operators. The nonlinear flux constant is the eigenvalue and the corresponding self-similar pattern is the eigenvector. We develop a quasi-Newton method to solve the problem and show the existence of nonlinear shapes with -fold dominated symmetries. Nonlinear results are compared with the established linear theory, demonstrating a divergence between the two due to non-linear effects absent in the linear stability analysis. Further, we investigate how sensitive the shape of the interface is to the viscosity. Additionally, we conduct numerous numerical experiments using a wide range of initial guesses and initial flux constants. Through these experiments, one is able to obtain a diagram of self-similar shapes and the corresponding flux. It could be used to verify possible self-similar shapes with a proper initial guess and initial flux constant. Our results go beyond the predictions of linear theory and establish a bridge between the linear theory and simulations.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.