{"title":"关于混合分数泊松过程的随机死亡率模型:精算估值中长程依赖性的校准和实证分析","authors":"Haoran Jiang, Zhehao Zhang, Xiaojun Zhu","doi":"10.1016/j.insmatheco.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, many studies have adopted the fractional stochastic mortality process in characterising the long-range dependence (LRD) feature of mortality dynamics, while there are still fewer appropriate non-Gaussian fractional models to describe it. We propose a stochastic mortality process driven by a mixture of Brownian motion and modified fractional Poisson process to capture the LRD of mortality rates. The survival probability under this new stochastic mortality model keeps flexibility and consistency with existing affine-form mortality models, which makes the model convenient in evaluating mortality-linked products under the market-consistent method. The formula of survival probability also considers the historical information from survival data, which enables the model to capture historical health records of lives. The LRD feature is reflected by our proposed model in the empirical analysis, which includes the calibration and prediction of survival curves based on recent generation data in Japan and the UK. Finally, the consequent empirical analysis of annuity pricing illustrates the difference of whether this feature is involved in actuarial valuation.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"119 ","pages":"Pages 64-92"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic mortality model with respect to mixed fractional Poisson process: Calibration and empirical analysis of long-range dependence in actuarial valuation\",\"authors\":\"Haoran Jiang, Zhehao Zhang, Xiaojun Zhu\",\"doi\":\"10.1016/j.insmatheco.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, many studies have adopted the fractional stochastic mortality process in characterising the long-range dependence (LRD) feature of mortality dynamics, while there are still fewer appropriate non-Gaussian fractional models to describe it. We propose a stochastic mortality process driven by a mixture of Brownian motion and modified fractional Poisson process to capture the LRD of mortality rates. The survival probability under this new stochastic mortality model keeps flexibility and consistency with existing affine-form mortality models, which makes the model convenient in evaluating mortality-linked products under the market-consistent method. The formula of survival probability also considers the historical information from survival data, which enables the model to capture historical health records of lives. The LRD feature is reflected by our proposed model in the empirical analysis, which includes the calibration and prediction of survival curves based on recent generation data in Japan and the UK. Finally, the consequent empirical analysis of annuity pricing illustrates the difference of whether this feature is involved in actuarial valuation.</p></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"119 \",\"pages\":\"Pages 64-92\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668724000854\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000854","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Stochastic mortality model with respect to mixed fractional Poisson process: Calibration and empirical analysis of long-range dependence in actuarial valuation
Recently, many studies have adopted the fractional stochastic mortality process in characterising the long-range dependence (LRD) feature of mortality dynamics, while there are still fewer appropriate non-Gaussian fractional models to describe it. We propose a stochastic mortality process driven by a mixture of Brownian motion and modified fractional Poisson process to capture the LRD of mortality rates. The survival probability under this new stochastic mortality model keeps flexibility and consistency with existing affine-form mortality models, which makes the model convenient in evaluating mortality-linked products under the market-consistent method. The formula of survival probability also considers the historical information from survival data, which enables the model to capture historical health records of lives. The LRD feature is reflected by our proposed model in the empirical analysis, which includes the calibration and prediction of survival curves based on recent generation data in Japan and the UK. Finally, the consequent empirical analysis of annuity pricing illustrates the difference of whether this feature is involved in actuarial valuation.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.