基于 LSTM 的河流环境 DEM 生成技术

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Virág Lovász , Ákos Halmai
{"title":"基于 LSTM 的河流环境 DEM 生成技术","authors":"Virág Lovász ,&nbsp;Ákos Halmai","doi":"10.1016/j.acags.2024.100187","DOIUrl":null,"url":null,"abstract":"<div><p>In the broad field of sensors and 3D information retrieval, bathymetric reconstruction from side-scan sonar imaging is associated with unique technical hurdles. Neural Networks have recently led to promising new solutions in this field, but the available methods tend to be complex and data-intensive in a way typically making their use in a riverine environment impossible. Throughout our work, we have focused on simplifying the problem-handling and treating compatibility with a riverine environment as priority. In our work, Long Short-Term Memory proved to be effective in a surprisingly simple form. Combined with traditional post-processing techniques in the GIS environment, like median filtered focal statistics, our workflow ultimately results in ∼0.259 m median of error on the evaluation dataset of the Dráva River.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100187"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259019742400034X/pdfft?md5=17b4129af31ed050fc8151abebd2cdbf&pid=1-s2.0-S259019742400034X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"LSTM-based DEM generation in riverine environment\",\"authors\":\"Virág Lovász ,&nbsp;Ákos Halmai\",\"doi\":\"10.1016/j.acags.2024.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the broad field of sensors and 3D information retrieval, bathymetric reconstruction from side-scan sonar imaging is associated with unique technical hurdles. Neural Networks have recently led to promising new solutions in this field, but the available methods tend to be complex and data-intensive in a way typically making their use in a riverine environment impossible. Throughout our work, we have focused on simplifying the problem-handling and treating compatibility with a riverine environment as priority. In our work, Long Short-Term Memory proved to be effective in a surprisingly simple form. Combined with traditional post-processing techniques in the GIS environment, like median filtered focal statistics, our workflow ultimately results in ∼0.259 m median of error on the evaluation dataset of the Dráva River.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"23 \",\"pages\":\"Article 100187\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259019742400034X/pdfft?md5=17b4129af31ed050fc8151abebd2cdbf&pid=1-s2.0-S259019742400034X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259019742400034X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259019742400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在传感器和三维信息检索的广泛领域中,侧扫声纳成像的测深重建存在独特的技术障碍。最近,神经网络为这一领域带来了前景广阔的新解决方案,但现有的方法往往非常复杂且数据密集,通常无法在河流环境中使用。在我们的工作中,我们一直致力于简化问题的处理,并优先考虑与河流环境的兼容性。在我们的工作中,事实证明长短时记忆以一种令人惊讶的简单形式发挥了作用。结合 GIS 环境中的传统后处理技术(如中值过滤焦点统计),我们的工作流程最终使德拉瓦河评估数据集的中值误差降到了 0.259 米以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSTM-based DEM generation in riverine environment

In the broad field of sensors and 3D information retrieval, bathymetric reconstruction from side-scan sonar imaging is associated with unique technical hurdles. Neural Networks have recently led to promising new solutions in this field, but the available methods tend to be complex and data-intensive in a way typically making their use in a riverine environment impossible. Throughout our work, we have focused on simplifying the problem-handling and treating compatibility with a riverine environment as priority. In our work, Long Short-Term Memory proved to be effective in a surprisingly simple form. Combined with traditional post-processing techniques in the GIS environment, like median filtered focal statistics, our workflow ultimately results in ∼0.259 m median of error on the evaluation dataset of the Dráva River.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信