空间异质环境中的血吸虫病数学模型

IF 1.4 Q2 MATHEMATICS, APPLIED
Franck Eric Thepi Nkuimeni , Berge Tsanou
{"title":"空间异质环境中的血吸虫病数学模型","authors":"Franck Eric Thepi Nkuimeni ,&nbsp;Berge Tsanou","doi":"10.1016/j.rinam.2024.100488","DOIUrl":null,"url":null,"abstract":"<div><p>Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have shown that large-scale development projects involving massive population displacement and water irrigation, such as the construction of dams, lakes, and the development of agricultural areas, favour the proliferation of bilharzia. These observations motivate us to propose a reaction–diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear contact functions and density-dependent parameters. The aim is to better understanding the role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate recommendations for the control of that silent threat. We characterize the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the model. The uniform persistence theory, the maximum principle are used to conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical results are illustrated through numerical simulations.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100488"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259003742400058X/pdfft?md5=e857e903b9525a96f507d65c9af41c26&pid=1-s2.0-S259003742400058X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Schistosomiasis mathematical model in a spatially heterogeneous environment\",\"authors\":\"Franck Eric Thepi Nkuimeni ,&nbsp;Berge Tsanou\",\"doi\":\"10.1016/j.rinam.2024.100488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have shown that large-scale development projects involving massive population displacement and water irrigation, such as the construction of dams, lakes, and the development of agricultural areas, favour the proliferation of bilharzia. These observations motivate us to propose a reaction–diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear contact functions and density-dependent parameters. The aim is to better understanding the role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate recommendations for the control of that silent threat. We characterize the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the model. The uniform persistence theory, the maximum principle are used to conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical results are illustrated through numerical simulations.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100488\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259003742400058X/pdfft?md5=e857e903b9525a96f507d65c9af41c26&pid=1-s2.0-S259003742400058X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259003742400058X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742400058X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

血吸虫病被世界卫生组织列为一种被忽视的热带疾病。最近的研究表明,涉及大规模人口迁移和水利灌溉的大规模开发项目,如修建水坝、湖泊和开发农业区,有利于血吸虫病的扩散。这些观察结果促使我们提出一个反应-扩散模型,以评估人类、钉螺、carcaria、miracidia 的迁移在血吸虫病传播动态中的作用。该模型包含一般非线性接触函数和密度参数。目的是更好地理解空间相互作用对血吸虫病传播的作用,从而为控制这一无声威胁提出适当的建议。我们描述了模型的基本繁殖数 R0。利用均匀持久性理论和最大原则对同质模型和异质模型进行了深入分析。我们通过数值模拟对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schistosomiasis mathematical model in a spatially heterogeneous environment

Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have shown that large-scale development projects involving massive population displacement and water irrigation, such as the construction of dams, lakes, and the development of agricultural areas, favour the proliferation of bilharzia. These observations motivate us to propose a reaction–diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear contact functions and density-dependent parameters. The aim is to better understanding the role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate recommendations for the control of that silent threat. We characterize the basic reproduction number R0 of the model. The uniform persistence theory, the maximum principle are used to conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical results are illustrated through numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信