将现场可编程门阵列引入基因型分期和估算。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-07-30 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae114
Lars Wienbrandt, David Ellinghaus
{"title":"将现场可编程门阵列引入基因型分期和估算。","authors":"Lars Wienbrandt, David Ellinghaus","doi":"10.1093/bioadv/vbae114","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>We recently developed <i>EagleImp</i>, a free software that combines genotype phasing and imputation in a single tool. By introducing algorithmic and technical improvements we accelerated the classical two-step approach using <i>Eagle2</i> and <i>PBWT</i>. Here, we demonstrate how to use field-programmable gate arrays (FPGAs) to accelerate <i>EagleImp</i> even further by a factor of up to 93% without loss of phasing and imputation quality. Due to the speed advantage over a not accelerated processor-based implementation, the FPGA extension of <i>EagleImp</i> allows the user to choose a more resource-intensive parameter setting in exchange for computation time to further improve phasing and imputation quality.</p><p><strong>Availability and implementation: </strong><i>EagleImp</i> and its FPGA extension are freely available at https://github.com/ikmb/eagleimp and https://github.com/ikmb/eagleimp-fpga.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333566/pdf/","citationCount":"0","resultStr":"{\"title\":\"Introducing field-programmable gate arrays in genotype phasing and imputation.\",\"authors\":\"Lars Wienbrandt, David Ellinghaus\",\"doi\":\"10.1093/bioadv/vbae114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>We recently developed <i>EagleImp</i>, a free software that combines genotype phasing and imputation in a single tool. By introducing algorithmic and technical improvements we accelerated the classical two-step approach using <i>Eagle2</i> and <i>PBWT</i>. Here, we demonstrate how to use field-programmable gate arrays (FPGAs) to accelerate <i>EagleImp</i> even further by a factor of up to 93% without loss of phasing and imputation quality. Due to the speed advantage over a not accelerated processor-based implementation, the FPGA extension of <i>EagleImp</i> allows the user to choose a more resource-intensive parameter setting in exchange for computation time to further improve phasing and imputation quality.</p><p><strong>Availability and implementation: </strong><i>EagleImp</i> and its FPGA extension are freely available at https://github.com/ikmb/eagleimp and https://github.com/ikmb/eagleimp-fpga.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333566/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:我们最近开发了一款免费软件 EagleImp,它将基因型分期和归因结合在一个工具中。通过引入算法和技术改进,我们加速了使用 Eagle2 和 PBWT 的经典两步法。在这里,我们展示了如何使用现场可编程门阵列(FPGA)将 EagleImp 的速度进一步提高 93%,而不会降低分期和归因的质量。由于与未加速的基于处理器的实现相比具有速度优势,EagleImp 的 FPGA 扩展允许用户选择更耗费资源的参数设置,以换取计算时间,从而进一步提高相位和估算质量:EagleImp 及其 FPGA 扩展可在 https://github.com/ikmb/eagleimp 和 https://github.com/ikmb/eagleimp-fpga 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introducing field-programmable gate arrays in genotype phasing and imputation.

Summary: We recently developed EagleImp, a free software that combines genotype phasing and imputation in a single tool. By introducing algorithmic and technical improvements we accelerated the classical two-step approach using Eagle2 and PBWT. Here, we demonstrate how to use field-programmable gate arrays (FPGAs) to accelerate EagleImp even further by a factor of up to 93% without loss of phasing and imputation quality. Due to the speed advantage over a not accelerated processor-based implementation, the FPGA extension of EagleImp allows the user to choose a more resource-intensive parameter setting in exchange for computation time to further improve phasing and imputation quality.

Availability and implementation: EagleImp and its FPGA extension are freely available at https://github.com/ikmb/eagleimp and https://github.com/ikmb/eagleimp-fpga.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信