蛋白质结构动态异质性的解卷积。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Structural Dynamics-Us Pub Date : 2024-08-19 eCollection Date: 2024-07-01 DOI:10.1063/4.0000261
Zhong Ren, Xiaojing Yang
{"title":"蛋白质结构动态异质性的解卷积。","authors":"Zhong Ren, Xiaojing Yang","doi":"10.1063/4.0000261","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneity is intrinsic to the dynamic process of a chemical reaction. As reactants are converted to products via intermediates, the nature and extent of heterogeneity vary temporally throughout the duration of the reaction and spatially across the molecular ensemble. The goal of many biophysical techniques, including crystallography and spectroscopy, is to establish a reaction trajectory that follows an experimentally provoked dynamic process. It is essential to properly analyze and resolve heterogeneity inevitably embedded in experimental datasets. We have developed a deconvolution technique based on singular value decomposition (SVD), which we have rigorously practiced in diverse research projects. In this review, we recapitulate the motivation and challenges in addressing the heterogeneity problem and lay out the mathematical foundation of our methodology that enables isolation of chemically sensible structural signals. We also present a few case studies to demonstrate the concept and outcome of the SVD-based deconvolution. Finally, we highlight a few recent studies with mechanistic insights made possible by heterogeneity deconvolution.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335360/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deconvolution of dynamic heterogeneity in protein structure.\",\"authors\":\"Zhong Ren, Xiaojing Yang\",\"doi\":\"10.1063/4.0000261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterogeneity is intrinsic to the dynamic process of a chemical reaction. As reactants are converted to products via intermediates, the nature and extent of heterogeneity vary temporally throughout the duration of the reaction and spatially across the molecular ensemble. The goal of many biophysical techniques, including crystallography and spectroscopy, is to establish a reaction trajectory that follows an experimentally provoked dynamic process. It is essential to properly analyze and resolve heterogeneity inevitably embedded in experimental datasets. We have developed a deconvolution technique based on singular value decomposition (SVD), which we have rigorously practiced in diverse research projects. In this review, we recapitulate the motivation and challenges in addressing the heterogeneity problem and lay out the mathematical foundation of our methodology that enables isolation of chemically sensible structural signals. We also present a few case studies to demonstrate the concept and outcome of the SVD-based deconvolution. Finally, we highlight a few recent studies with mechanistic insights made possible by heterogeneity deconvolution.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335360/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000261\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000261","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

异质性是化学反应动态过程的固有特性。当反应物通过中间产物转化为生成物时,异质性的性质和程度在整个反应过程中的时间上和分子集合的空间上都会发生变化。许多生物物理技术(包括晶体学和光谱学)的目标是建立一个反应轨迹,该轨迹遵循实验激发的动态过程。正确分析和解决实验数据集中不可避免的异质性问题至关重要。我们开发了一种基于奇异值分解(SVD)的解卷积技术,并在多个研究项目中进行了严格的实践。在这篇综述中,我们回顾了解决异质性问题的动机和挑战,并阐述了我们的方法的数学基础,这种方法能够分离化学敏感结构信号。我们还介绍了一些案例研究,以展示基于 SVD 的解卷积的概念和结果。最后,我们重点介绍了最近的几项研究,这些研究通过异质性解卷积获得了对机理的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deconvolution of dynamic heterogeneity in protein structure.

Heterogeneity is intrinsic to the dynamic process of a chemical reaction. As reactants are converted to products via intermediates, the nature and extent of heterogeneity vary temporally throughout the duration of the reaction and spatially across the molecular ensemble. The goal of many biophysical techniques, including crystallography and spectroscopy, is to establish a reaction trajectory that follows an experimentally provoked dynamic process. It is essential to properly analyze and resolve heterogeneity inevitably embedded in experimental datasets. We have developed a deconvolution technique based on singular value decomposition (SVD), which we have rigorously practiced in diverse research projects. In this review, we recapitulate the motivation and challenges in addressing the heterogeneity problem and lay out the mathematical foundation of our methodology that enables isolation of chemically sensible structural signals. We also present a few case studies to demonstrate the concept and outcome of the SVD-based deconvolution. Finally, we highlight a few recent studies with mechanistic insights made possible by heterogeneity deconvolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信