{"title":"肿瘤相关巨噬细胞衍生的 TGF-β1 通过 Smad2/3 信号通路激活 GLI2,从而影响肺腺癌的顺铂抗性","authors":"Xiaoling Lan, Dalong Wei, Lini Fang, Xiangsheng Wu, Biaoliang Wu","doi":"10.1177/15330338241274337","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transforming growth factor-β1 (TGF-β1) is an immunosuppressive cytokine that is highly expressed in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). TGF-β1 plays important roles in regulating tumor metastasis and chemotherapy resistance. However, the specific molecular mechanisms by which TGF-β1 regulates cisplatin resistance in the TAM of LUAD remain unclear.</p><p><strong>Materials and methods: </strong>THP-1 induced macrophages were co-cultured with A549 and H1975 cells, and subsequently transfected with silencing TGF-β1 (siTGF-β1), GLI2 (siGLI2), a GLI2 overexpression plasmid, and their negative controls. Cellular activity was measured by CCK-8 and colony formation assays. Cell apoptosis was evaluated by flow cytometry and TUNEL staining. Transwell assays were performed to assess cell migration and invasion capabilities. The levels of Smad2/3, GLI2, cyclin D, and cyclin E expression were evaluated by qPCR, western blotting, and immunofluorescence methods. TGF-β1 levels were determined by ELISA.</p><p><strong>Results: </strong>Macrophages suppressed the apoptosis and promoted the migration and invasion of LUAD cells. TAM siTGF-β1 downregulated the Smad2/3 signaling pathways and GLI2 expression, deceased cell proliferation, and promoted apoptosis. SiGLI2 increased apoptosis and decreased the proliferation of LUAD cell lines. GLI2 decreased cisplatin resistance in LUAD cells.</p><p><strong>Conclusion: </strong>High expression of TGF-β1 in the TAM positively activates GLI2 expression via the Smad2/3 pathway, which subsequently regulates cyclin D and cyclin E expression, and promotes the cisplatin resistance of LUAD.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"23 ","pages":"15330338241274337"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339934/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor-Associated Macrophage-Derived TGF-β1 Activates GLI2 via the Smad2/3 Signaling Pathway to Affect Cisplatin Resistance in Lung Adenocarcinoma.\",\"authors\":\"Xiaoling Lan, Dalong Wei, Lini Fang, Xiangsheng Wu, Biaoliang Wu\",\"doi\":\"10.1177/15330338241274337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Transforming growth factor-β1 (TGF-β1) is an immunosuppressive cytokine that is highly expressed in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). TGF-β1 plays important roles in regulating tumor metastasis and chemotherapy resistance. However, the specific molecular mechanisms by which TGF-β1 regulates cisplatin resistance in the TAM of LUAD remain unclear.</p><p><strong>Materials and methods: </strong>THP-1 induced macrophages were co-cultured with A549 and H1975 cells, and subsequently transfected with silencing TGF-β1 (siTGF-β1), GLI2 (siGLI2), a GLI2 overexpression plasmid, and their negative controls. Cellular activity was measured by CCK-8 and colony formation assays. Cell apoptosis was evaluated by flow cytometry and TUNEL staining. Transwell assays were performed to assess cell migration and invasion capabilities. The levels of Smad2/3, GLI2, cyclin D, and cyclin E expression were evaluated by qPCR, western blotting, and immunofluorescence methods. TGF-β1 levels were determined by ELISA.</p><p><strong>Results: </strong>Macrophages suppressed the apoptosis and promoted the migration and invasion of LUAD cells. TAM siTGF-β1 downregulated the Smad2/3 signaling pathways and GLI2 expression, deceased cell proliferation, and promoted apoptosis. SiGLI2 increased apoptosis and decreased the proliferation of LUAD cell lines. GLI2 decreased cisplatin resistance in LUAD cells.</p><p><strong>Conclusion: </strong>High expression of TGF-β1 in the TAM positively activates GLI2 expression via the Smad2/3 pathway, which subsequently regulates cyclin D and cyclin E expression, and promotes the cisplatin resistance of LUAD.</p>\",\"PeriodicalId\":22203,\"journal\":{\"name\":\"Technology in Cancer Research & Treatment\",\"volume\":\"23 \",\"pages\":\"15330338241274337\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339934/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Cancer Research & Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15330338241274337\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338241274337","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Tumor-Associated Macrophage-Derived TGF-β1 Activates GLI2 via the Smad2/3 Signaling Pathway to Affect Cisplatin Resistance in Lung Adenocarcinoma.
Background: Transforming growth factor-β1 (TGF-β1) is an immunosuppressive cytokine that is highly expressed in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). TGF-β1 plays important roles in regulating tumor metastasis and chemotherapy resistance. However, the specific molecular mechanisms by which TGF-β1 regulates cisplatin resistance in the TAM of LUAD remain unclear.
Materials and methods: THP-1 induced macrophages were co-cultured with A549 and H1975 cells, and subsequently transfected with silencing TGF-β1 (siTGF-β1), GLI2 (siGLI2), a GLI2 overexpression plasmid, and their negative controls. Cellular activity was measured by CCK-8 and colony formation assays. Cell apoptosis was evaluated by flow cytometry and TUNEL staining. Transwell assays were performed to assess cell migration and invasion capabilities. The levels of Smad2/3, GLI2, cyclin D, and cyclin E expression were evaluated by qPCR, western blotting, and immunofluorescence methods. TGF-β1 levels were determined by ELISA.
Results: Macrophages suppressed the apoptosis and promoted the migration and invasion of LUAD cells. TAM siTGF-β1 downregulated the Smad2/3 signaling pathways and GLI2 expression, deceased cell proliferation, and promoted apoptosis. SiGLI2 increased apoptosis and decreased the proliferation of LUAD cell lines. GLI2 decreased cisplatin resistance in LUAD cells.
Conclusion: High expression of TGF-β1 in the TAM positively activates GLI2 expression via the Smad2/3 pathway, which subsequently regulates cyclin D and cyclin E expression, and promotes the cisplatin resistance of LUAD.
期刊介绍:
Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.