使用多重边际模型进行同步推理。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Ludwig A Hothorn, Christian Ritz, Frank Schaarschmidt, Signe M Jensen, Robin Ristl
{"title":"使用多重边际模型进行同步推理。","authors":"Ludwig A Hothorn, Christian Ritz, Frank Schaarschmidt, Signe M Jensen, Robin Ristl","doi":"10.1002/pst.2428","DOIUrl":null,"url":null,"abstract":"<p><p>This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Inference Using Multiple Marginal Models.\",\"authors\":\"Ludwig A Hothorn, Christian Ritz, Frank Schaarschmidt, Signe M Jensen, Robin Ristl\",\"doi\":\"10.1002/pst.2428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2428\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本教程介绍了单步低维同步推理,重点是调整后 p 值和兼容置信区间的可用性,而不仅仅是通常的均值比较。其基本思想是:首先,利用相关性对多元 t 分布的量值的影响:越高越不保守。此外,第二,使用多重边际模型方法(mmm),使用线性到广义线性混合模型类中的多重模型来估算相关矩阵的可估算性。使用选定的 R 软件包,通过几个真实数据场景讨论了使用 mmm 的基本 maxT 检验。令人惊讶的是,其中突出了不同的特点:(i) 分析不同尺度、相关的多个终点,(ii) 分析多个相关的二进制终点,(iii) 将剂量作为定性因子和/或定量协变量建模,(iv) 在 poly-k 趋势检验中联合考虑多个调整参数,(v) 联合检验剂量和时间、(viii) 多重线性混合效应模型;(ix) 广义估计方程;以及 (x) 非线性回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Inference Using Multiple Marginal Models.

This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信