{"title":"目前利用深度学习模型预测 mRNA 翻译的局限性。","authors":"Niels Schlusser, Asier González, Muskan Pandey, Mihaela Zavolan","doi":"10.1186/s13059-024-03369-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The design of nucleotide sequences with defined properties is a long-standing problem in bioengineering. An important application is protein expression, be it in the context of research or the production of mRNA vaccines. The rate of protein synthesis depends on the 5' untranslated region (5'UTR) of the mRNAs, and recently, deep learning models were proposed to predict the translation output of mRNAs from the 5'UTR sequence. At the same time, large data sets of endogenous and reporter mRNA translation have become available.</p><p><strong>Results: </strong>In this study, we use complementary data obtained in two different cell types to assess the accuracy and generality of currently available models for predicting translational output. We find that while performing well on the data sets on which they were trained, deep learning models do not generalize well to other data sets, in particular of endogenous mRNAs, which differ in many properties from reporter constructs.</p><p><strong>Conclusions: </strong>These differences limit the ability of deep learning models to uncover mechanisms of translation control and to predict the impact of genetic variation. We suggest directions that combine high-throughput measurements and machine learning to unravel mechanisms of translation control and improve construct design.</p>","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":"227"},"PeriodicalIF":10.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337900/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current limitations in predicting mRNA translation with deep learning models.\",\"authors\":\"Niels Schlusser, Asier González, Muskan Pandey, Mihaela Zavolan\",\"doi\":\"10.1186/s13059-024-03369-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The design of nucleotide sequences with defined properties is a long-standing problem in bioengineering. An important application is protein expression, be it in the context of research or the production of mRNA vaccines. The rate of protein synthesis depends on the 5' untranslated region (5'UTR) of the mRNAs, and recently, deep learning models were proposed to predict the translation output of mRNAs from the 5'UTR sequence. At the same time, large data sets of endogenous and reporter mRNA translation have become available.</p><p><strong>Results: </strong>In this study, we use complementary data obtained in two different cell types to assess the accuracy and generality of currently available models for predicting translational output. We find that while performing well on the data sets on which they were trained, deep learning models do not generalize well to other data sets, in particular of endogenous mRNAs, which differ in many properties from reporter constructs.</p><p><strong>Conclusions: </strong>These differences limit the ability of deep learning models to uncover mechanisms of translation control and to predict the impact of genetic variation. We suggest directions that combine high-throughput measurements and machine learning to unravel mechanisms of translation control and improve construct design.</p>\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"25 1\",\"pages\":\"227\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337900/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03369-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03369-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Current limitations in predicting mRNA translation with deep learning models.
Background: The design of nucleotide sequences with defined properties is a long-standing problem in bioengineering. An important application is protein expression, be it in the context of research or the production of mRNA vaccines. The rate of protein synthesis depends on the 5' untranslated region (5'UTR) of the mRNAs, and recently, deep learning models were proposed to predict the translation output of mRNAs from the 5'UTR sequence. At the same time, large data sets of endogenous and reporter mRNA translation have become available.
Results: In this study, we use complementary data obtained in two different cell types to assess the accuracy and generality of currently available models for predicting translational output. We find that while performing well on the data sets on which they were trained, deep learning models do not generalize well to other data sets, in particular of endogenous mRNAs, which differ in many properties from reporter constructs.
Conclusions: These differences limit the ability of deep learning models to uncover mechanisms of translation control and to predict the impact of genetic variation. We suggest directions that combine high-throughput measurements and machine learning to unravel mechanisms of translation control and improve construct design.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.