Smilja Todorovic, Katarina Milosevic, Ana Milosevic, Marija M Janjic, Srdjan J Sokanovic, Danijela Savic, Irena Lavrnja
{"title":"大鼠脊髓在实验性自身免疫性脑脊髓炎期间参与维持胆固醇平衡的成分的表达","authors":"Smilja Todorovic, Katarina Milosevic, Ana Milosevic, Marija M Janjic, Srdjan J Sokanovic, Danijela Savic, Irena Lavrnja","doi":"10.5114/fn.2024.141376","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulations in cholesterol homeostasis contribute to the pathogenesis of multiple sclerosis (MS) and its best described animal model, experimental autoimmune encephalomyelitis (EAE). Cholesterol is an important component of myelin, which is necessary for signal transmission between neurons. Demyelination leads to the formation of oxysterols, degradation products of cholesterol that are ligands for nuclear liver X receptors (LXRs). Genes regulated by LXRs are involved in cholesterol efflux, absorption, transport, and excretion, which we investigated in this study. In this study, we detected changes in gene expression of Srebf1, Ldlr, Soat1, Abca1, Lrp1, and Npc1, all of which are important in the regulation of cholesterol homeostasis, during the course of EAE in male and female rats. In particular, differential expression of Srebf1, Ldlr, and Soat1 was observed in the spinal cord of male and female rats during EAE. Moreover, these genes are altered during EAE. In contrast, the expression of Abca1 and Lrp1 was significantly affected only by sex. In male animals, the expression of Npc1 is conspicuously reduced in EAE pathology. Thus, our study confirms the involvement of enzymes of cholesterol metabolism in the pathophysiology of EAE, with sex and disease progression affecting the expression of these genes. These findings may improve the understanding of neurodegenerative diseases associated with impaired lipid metabolism in the brain, such as MS/EAE.</p>","PeriodicalId":12370,"journal":{"name":"Folia neuropathologica","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of components involved in cholesterol homeostasis maintenance during experimental autoimmune encephalomyelitis in rat spinal cord.\",\"authors\":\"Smilja Todorovic, Katarina Milosevic, Ana Milosevic, Marija M Janjic, Srdjan J Sokanovic, Danijela Savic, Irena Lavrnja\",\"doi\":\"10.5114/fn.2024.141376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulations in cholesterol homeostasis contribute to the pathogenesis of multiple sclerosis (MS) and its best described animal model, experimental autoimmune encephalomyelitis (EAE). Cholesterol is an important component of myelin, which is necessary for signal transmission between neurons. Demyelination leads to the formation of oxysterols, degradation products of cholesterol that are ligands for nuclear liver X receptors (LXRs). Genes regulated by LXRs are involved in cholesterol efflux, absorption, transport, and excretion, which we investigated in this study. In this study, we detected changes in gene expression of Srebf1, Ldlr, Soat1, Abca1, Lrp1, and Npc1, all of which are important in the regulation of cholesterol homeostasis, during the course of EAE in male and female rats. In particular, differential expression of Srebf1, Ldlr, and Soat1 was observed in the spinal cord of male and female rats during EAE. Moreover, these genes are altered during EAE. In contrast, the expression of Abca1 and Lrp1 was significantly affected only by sex. In male animals, the expression of Npc1 is conspicuously reduced in EAE pathology. Thus, our study confirms the involvement of enzymes of cholesterol metabolism in the pathophysiology of EAE, with sex and disease progression affecting the expression of these genes. These findings may improve the understanding of neurodegenerative diseases associated with impaired lipid metabolism in the brain, such as MS/EAE.</p>\",\"PeriodicalId\":12370,\"journal\":{\"name\":\"Folia neuropathologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia neuropathologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/fn.2024.141376\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/fn.2024.141376","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Expression of components involved in cholesterol homeostasis maintenance during experimental autoimmune encephalomyelitis in rat spinal cord.
Dysregulations in cholesterol homeostasis contribute to the pathogenesis of multiple sclerosis (MS) and its best described animal model, experimental autoimmune encephalomyelitis (EAE). Cholesterol is an important component of myelin, which is necessary for signal transmission between neurons. Demyelination leads to the formation of oxysterols, degradation products of cholesterol that are ligands for nuclear liver X receptors (LXRs). Genes regulated by LXRs are involved in cholesterol efflux, absorption, transport, and excretion, which we investigated in this study. In this study, we detected changes in gene expression of Srebf1, Ldlr, Soat1, Abca1, Lrp1, and Npc1, all of which are important in the regulation of cholesterol homeostasis, during the course of EAE in male and female rats. In particular, differential expression of Srebf1, Ldlr, and Soat1 was observed in the spinal cord of male and female rats during EAE. Moreover, these genes are altered during EAE. In contrast, the expression of Abca1 and Lrp1 was significantly affected only by sex. In male animals, the expression of Npc1 is conspicuously reduced in EAE pathology. Thus, our study confirms the involvement of enzymes of cholesterol metabolism in the pathophysiology of EAE, with sex and disease progression affecting the expression of these genes. These findings may improve the understanding of neurodegenerative diseases associated with impaired lipid metabolism in the brain, such as MS/EAE.
期刊介绍:
Folia Neuropathologica is an official journal of the Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. The journal publishes original articles and reviews that deal with all aspects of clinical and experimental neuropathology and related fields of neuroscience research. The scope of journal includes surgical and experimental pathomorphology, ultrastructure, immunohistochemistry, biochemistry and molecular biology of the nervous tissue. Papers on surgical neuropathology and neuroimaging are also welcome. The reports in other fields relevant to the understanding of human neuropathology might be considered.