Jiajia Tang, Quan Zheng, Qi Wang, Yaru Zhao, Preeta Ananthanarayanan, Chiara Reina, Berina Šabanović, Ke Jiang, Ming-Hsin Yang, Clara Csilla Meny, Huimin Wang, Mette Ø Agerbaek, Thomas Mandel Clausen, Tobias Gustavsson, Chenlei Wen, Felice Borghi, Alfredo Mellano, Elisabetta Fenocchio, Vanesa Gregorc, Anna Sapino, Thor G Theander, Da Fu, Alexandra Aicher, Ali Salanti, Baiyong Shen, Christopher Heeschen
{"title":"CTC 衍生的胰腺癌模型可作为研究工具,适用于精准医疗方法。","authors":"Jiajia Tang, Quan Zheng, Qi Wang, Yaru Zhao, Preeta Ananthanarayanan, Chiara Reina, Berina Šabanović, Ke Jiang, Ming-Hsin Yang, Clara Csilla Meny, Huimin Wang, Mette Ø Agerbaek, Thomas Mandel Clausen, Tobias Gustavsson, Chenlei Wen, Felice Borghi, Alfredo Mellano, Elisabetta Fenocchio, Vanesa Gregorc, Anna Sapino, Thor G Theander, Da Fu, Alexandra Aicher, Ali Salanti, Baiyong Shen, Christopher Heeschen","doi":"10.1016/j.xcrm.2024.101692","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) poses significant clinical challenges, often presenting as unresectable with limited biopsy options. Here, we show that circulating tumor cells (CTCs) offer a promising alternative, serving as a \"liquid biopsy\" that enables the generation of in vitro 3D models and highly aggressive in vivo models for functional and molecular studies in advanced PDAC. Within the retrieved CTC pool (median 65 CTCs/5 mL), we identify a subset (median content 8.9%) of CXCR4<sup>+</sup> CTCs displaying heightened stemness and metabolic traits, reminiscent of circulating cancer stem cells. Through comprehensive analysis, we elucidate the importance of CTC-derived models for identifying potential targets and guiding treatment strategies. Screening of stemness-targeting compounds identified stearoyl-coenzyme A desaturase (SCD1) as a promising target for advanced PDAC. These results underscore the pivotal role of CTC-derived models in uncovering therapeutic avenues and ultimately advancing personalized care in PDAC.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524981/pdf/","citationCount":"0","resultStr":"{\"title\":\"CTC-derived pancreatic cancer models serve as research tools and are suitable for precision medicine approaches.\",\"authors\":\"Jiajia Tang, Quan Zheng, Qi Wang, Yaru Zhao, Preeta Ananthanarayanan, Chiara Reina, Berina Šabanović, Ke Jiang, Ming-Hsin Yang, Clara Csilla Meny, Huimin Wang, Mette Ø Agerbaek, Thomas Mandel Clausen, Tobias Gustavsson, Chenlei Wen, Felice Borghi, Alfredo Mellano, Elisabetta Fenocchio, Vanesa Gregorc, Anna Sapino, Thor G Theander, Da Fu, Alexandra Aicher, Ali Salanti, Baiyong Shen, Christopher Heeschen\",\"doi\":\"10.1016/j.xcrm.2024.101692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) poses significant clinical challenges, often presenting as unresectable with limited biopsy options. Here, we show that circulating tumor cells (CTCs) offer a promising alternative, serving as a \\\"liquid biopsy\\\" that enables the generation of in vitro 3D models and highly aggressive in vivo models for functional and molecular studies in advanced PDAC. Within the retrieved CTC pool (median 65 CTCs/5 mL), we identify a subset (median content 8.9%) of CXCR4<sup>+</sup> CTCs displaying heightened stemness and metabolic traits, reminiscent of circulating cancer stem cells. Through comprehensive analysis, we elucidate the importance of CTC-derived models for identifying potential targets and guiding treatment strategies. Screening of stemness-targeting compounds identified stearoyl-coenzyme A desaturase (SCD1) as a promising target for advanced PDAC. These results underscore the pivotal role of CTC-derived models in uncovering therapeutic avenues and ultimately advancing personalized care in PDAC.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2024.101692\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101692","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CTC-derived pancreatic cancer models serve as research tools and are suitable for precision medicine approaches.
Pancreatic ductal adenocarcinoma (PDAC) poses significant clinical challenges, often presenting as unresectable with limited biopsy options. Here, we show that circulating tumor cells (CTCs) offer a promising alternative, serving as a "liquid biopsy" that enables the generation of in vitro 3D models and highly aggressive in vivo models for functional and molecular studies in advanced PDAC. Within the retrieved CTC pool (median 65 CTCs/5 mL), we identify a subset (median content 8.9%) of CXCR4+ CTCs displaying heightened stemness and metabolic traits, reminiscent of circulating cancer stem cells. Through comprehensive analysis, we elucidate the importance of CTC-derived models for identifying potential targets and guiding treatment strategies. Screening of stemness-targeting compounds identified stearoyl-coenzyme A desaturase (SCD1) as a promising target for advanced PDAC. These results underscore the pivotal role of CTC-derived models in uncovering therapeutic avenues and ultimately advancing personalized care in PDAC.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.