薛定谔算子的时间分数离散扩散方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aparajita Dasgupta, Shyam Swarup Mondal, Michael Ruzhansky, Abhilash Tushir
{"title":"薛定谔算子的时间分数离散扩散方程","authors":"Aparajita Dasgupta, Shyam Swarup Mondal, Michael Ruzhansky, Abhilash Tushir","doi":"10.1007/s13540-024-00323-y","DOIUrl":null,"url":null,"abstract":"<p>This article aims to investigate the semi-classical analog of the general Caputo-type diffusion equation with time-dependent diffusion coefficient associated with the discrete Schrödinger operator, <span>\\(\\mathcal {H}_{\\hbar ,V}:=-\\hbar ^{-2}\\mathcal {L}_{\\hbar }+V\\)</span> on the lattice <span>\\(\\hbar \\mathbb {Z}^{n},\\)</span> where <i>V</i> is a positive multiplication operator and <span>\\(\\mathcal {L}_{\\hbar }\\)</span> is the discrete Laplacian. We establish the well-posedness of the Cauchy problem for the general Caputo-type diffusion equation with a regular coefficient in the associated Sobolev-type spaces. However, it is very weakly well-posed when the diffusion coefficient has a distributional singularity. Finally, we recapture the classical solution (resp. very weak) for the general Caputo-type diffusion equation in the semi-classical limit <span>\\(\\hbar \\rightarrow 0\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-fractional discrete diffusion equation for Schrödinger operator\",\"authors\":\"Aparajita Dasgupta, Shyam Swarup Mondal, Michael Ruzhansky, Abhilash Tushir\",\"doi\":\"10.1007/s13540-024-00323-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article aims to investigate the semi-classical analog of the general Caputo-type diffusion equation with time-dependent diffusion coefficient associated with the discrete Schrödinger operator, <span>\\\\(\\\\mathcal {H}_{\\\\hbar ,V}:=-\\\\hbar ^{-2}\\\\mathcal {L}_{\\\\hbar }+V\\\\)</span> on the lattice <span>\\\\(\\\\hbar \\\\mathbb {Z}^{n},\\\\)</span> where <i>V</i> is a positive multiplication operator and <span>\\\\(\\\\mathcal {L}_{\\\\hbar }\\\\)</span> is the discrete Laplacian. We establish the well-posedness of the Cauchy problem for the general Caputo-type diffusion equation with a regular coefficient in the associated Sobolev-type spaces. However, it is very weakly well-posed when the diffusion coefficient has a distributional singularity. Finally, we recapture the classical solution (resp. very weak) for the general Caputo-type diffusion equation in the semi-classical limit <span>\\\\(\\\\hbar \\\\rightarrow 0\\\\)</span>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00323-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00323-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究与离散薛定谔算子(\(\mathcal {H}_{\hbar ,V}.=-\hbar^{-2}\mathcal {L}_{\hbar }+V}:=-\hbar ^{-2}\mathcal {L}_{\hbar }+V\) on the lattice \(\hbar \mathbb {Z}^{n},\) where V is a positive multiplication operator and \(\mathcal {L}_{\hbar }\) is the discrete Laplacian.我们在相关的 Sobolev 型空间中建立了具有规则系数的一般 Caputo 型扩散方程的 Cauchy 问题的良好求解性。然而,当扩散系数具有分布奇异性时,该问题的良好求解程度很弱。最后,我们在半经典极限 \(\hbar\rightarrow 0\) 中重获了一般卡普托型扩散方程的经典解(即非常弱的解)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-fractional discrete diffusion equation for Schrödinger operator

This article aims to investigate the semi-classical analog of the general Caputo-type diffusion equation with time-dependent diffusion coefficient associated with the discrete Schrödinger operator, \(\mathcal {H}_{\hbar ,V}:=-\hbar ^{-2}\mathcal {L}_{\hbar }+V\) on the lattice \(\hbar \mathbb {Z}^{n},\) where V is a positive multiplication operator and \(\mathcal {L}_{\hbar }\) is the discrete Laplacian. We establish the well-posedness of the Cauchy problem for the general Caputo-type diffusion equation with a regular coefficient in the associated Sobolev-type spaces. However, it is very weakly well-posed when the diffusion coefficient has a distributional singularity. Finally, we recapture the classical solution (resp. very weak) for the general Caputo-type diffusion equation in the semi-classical limit \(\hbar \rightarrow 0\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信