Rui Chen, Z. Z. Du, Hai-Peng Sun, Hai-Zhou Lu, X. C. Xie
{"title":"无序晶格上的非线性霍尔效应","authors":"Rui Chen, Z. Z. Du, Hai-Peng Sun, Hai-Zhou Lu, X. C. Xie","doi":"10.1103/physrevb.110.l081301","DOIUrl":null,"url":null,"abstract":"The nonlinear Hall effect has recently attracted significant interest due to its potential as a promising spectral tool and for device applications. A theory of the nonlinear Hall effect on a disordered lattice is a crucial step towards explorations in realistic devices, but has not yet been addressed. We study the nonlinear Hall response on a lattice, which allows us to introduce strong disorder numerically. We reveal a disorder-induced Berry curvature that was not discovered in previous perturbation theories. The disorder-induced Berry curvature induces a fluctuation of the nonlinear Hall conductivity, which anomalously increases as the Fermi energy moves from the band edges to higher energies. More importantly, the fluctuation may explain those observations in recent experiments. We also find signatures of localization of the nonlinear Hall effect. This Letter shows a territory of the nonlinear Hall effect yet to be explored.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Hall effect on a disordered lattice\",\"authors\":\"Rui Chen, Z. Z. Du, Hai-Peng Sun, Hai-Zhou Lu, X. C. Xie\",\"doi\":\"10.1103/physrevb.110.l081301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear Hall effect has recently attracted significant interest due to its potential as a promising spectral tool and for device applications. A theory of the nonlinear Hall effect on a disordered lattice is a crucial step towards explorations in realistic devices, but has not yet been addressed. We study the nonlinear Hall response on a lattice, which allows us to introduce strong disorder numerically. We reveal a disorder-induced Berry curvature that was not discovered in previous perturbation theories. The disorder-induced Berry curvature induces a fluctuation of the nonlinear Hall conductivity, which anomalously increases as the Fermi energy moves from the band edges to higher energies. More importantly, the fluctuation may explain those observations in recent experiments. We also find signatures of localization of the nonlinear Hall effect. This Letter shows a territory of the nonlinear Hall effect yet to be explored.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.l081301\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.l081301","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The nonlinear Hall effect has recently attracted significant interest due to its potential as a promising spectral tool and for device applications. A theory of the nonlinear Hall effect on a disordered lattice is a crucial step towards explorations in realistic devices, but has not yet been addressed. We study the nonlinear Hall response on a lattice, which allows us to introduce strong disorder numerically. We reveal a disorder-induced Berry curvature that was not discovered in previous perturbation theories. The disorder-induced Berry curvature induces a fluctuation of the nonlinear Hall conductivity, which anomalously increases as the Fermi energy moves from the band edges to higher energies. More importantly, the fluctuation may explain those observations in recent experiments. We also find signatures of localization of the nonlinear Hall effect. This Letter shows a territory of the nonlinear Hall effect yet to be explored.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter