Jiayu Fang , Mohammad Z. Al-Hamdan , Andrew M. O'Reilly , Yavuz Ozeren
{"title":"用于模拟抽水和注水诱导的可变饱和地下水流的稳定局部弱强形式径向基函数方法","authors":"Jiayu Fang , Mohammad Z. Al-Hamdan , Andrew M. O'Reilly , Yavuz Ozeren","doi":"10.1016/j.enganabound.2024.105922","DOIUrl":null,"url":null,"abstract":"<div><p>The unsaturated zone profoundly affects groundwater (GW) flow induced by pumping and injection due to the capillary forces. However, current radial basis function (RBF) numerical models for GW pumping and injection mostly ignore the unsaturated zone. To bridge this gap, we developed a new three-dimensional weak strong form RBF model in this study, called CCHE3D-GW-RBF. Flow processes were modelled by the mixed-form Richards equation which was iteratively solved by the modified Picard iteration. Soil-water characteristic curves were represented by the widely applicable formulas, the van Genuchten (1980) model. Differential operators were approximated by the localized Gaussian RBF, and the weighted singular value decomposition method was used to construct stable bases. The injection/pumping wells and the flux boundaries were handled by the weak formulation using Meshless Local Petrov Galerkin method, and the strong-form equation using the collocation RBF method was enforced on the other points. Good agreement was found between the simulation results from our numerical model and the well-accepted solutions in all three verification cases, demonstrating the accuracy and applicability of this model. In addition, a smaller RBF shape parameter was found to produce a more accurate modelling resulting, indicating the necessity of implementing stable bases for RBF models.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105922"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stable localized weak strong form radial basis function method for modelling variably saturated groundwater flow induced by pumping and injection\",\"authors\":\"Jiayu Fang , Mohammad Z. Al-Hamdan , Andrew M. O'Reilly , Yavuz Ozeren\",\"doi\":\"10.1016/j.enganabound.2024.105922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unsaturated zone profoundly affects groundwater (GW) flow induced by pumping and injection due to the capillary forces. However, current radial basis function (RBF) numerical models for GW pumping and injection mostly ignore the unsaturated zone. To bridge this gap, we developed a new three-dimensional weak strong form RBF model in this study, called CCHE3D-GW-RBF. Flow processes were modelled by the mixed-form Richards equation which was iteratively solved by the modified Picard iteration. Soil-water characteristic curves were represented by the widely applicable formulas, the van Genuchten (1980) model. Differential operators were approximated by the localized Gaussian RBF, and the weighted singular value decomposition method was used to construct stable bases. The injection/pumping wells and the flux boundaries were handled by the weak formulation using Meshless Local Petrov Galerkin method, and the strong-form equation using the collocation RBF method was enforced on the other points. Good agreement was found between the simulation results from our numerical model and the well-accepted solutions in all three verification cases, demonstrating the accuracy and applicability of this model. In addition, a smaller RBF shape parameter was found to produce a more accurate modelling resulting, indicating the necessity of implementing stable bases for RBF models.</p></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"168 \",\"pages\":\"Article 105922\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724003965\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724003965","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A stable localized weak strong form radial basis function method for modelling variably saturated groundwater flow induced by pumping and injection
The unsaturated zone profoundly affects groundwater (GW) flow induced by pumping and injection due to the capillary forces. However, current radial basis function (RBF) numerical models for GW pumping and injection mostly ignore the unsaturated zone. To bridge this gap, we developed a new three-dimensional weak strong form RBF model in this study, called CCHE3D-GW-RBF. Flow processes were modelled by the mixed-form Richards equation which was iteratively solved by the modified Picard iteration. Soil-water characteristic curves were represented by the widely applicable formulas, the van Genuchten (1980) model. Differential operators were approximated by the localized Gaussian RBF, and the weighted singular value decomposition method was used to construct stable bases. The injection/pumping wells and the flux boundaries were handled by the weak formulation using Meshless Local Petrov Galerkin method, and the strong-form equation using the collocation RBF method was enforced on the other points. Good agreement was found between the simulation results from our numerical model and the well-accepted solutions in all three verification cases, demonstrating the accuracy and applicability of this model. In addition, a smaller RBF shape parameter was found to produce a more accurate modelling resulting, indicating the necessity of implementing stable bases for RBF models.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.