{"title":"解决低间隙欧几里得旅行推销员问题的准线性时间启发式","authors":"Arno Formella","doi":"10.1016/j.jocs.2024.102424","DOIUrl":null,"url":null,"abstract":"<div><p>The traveling salesman problem (TSP) is a well studied NP-hard optimization problem. We present a novel heuristic to find approximate solutions for the case of the TSP with Euclidean metric. Our pair-center algorithm runs in quasi-linear time and on linear space. In practical experiments on a variety of well known benchmarks the algorithm shows linearithmic (i.e., <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>) runtime. The solutions found by the pair-center algorithm are very good on smaller problem instances, and better than those generated by any other heuristic with at most quadratic runtime. Eventually, the average gap of the pair-center algorithm on all benchmark instances with less than 1<!--> <!-->001 points is 0.94% and for all instances with more than 1000 points up to 100 million points is 4.57%.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102424"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877750324002175/pdfft?md5=f01dfeaca300fe86a8ddf250d2d1414b&pid=1-s2.0-S1877750324002175-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quasi-linear time heuristic to solve the Euclidean traveling salesman problem with low gap\",\"authors\":\"Arno Formella\",\"doi\":\"10.1016/j.jocs.2024.102424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The traveling salesman problem (TSP) is a well studied NP-hard optimization problem. We present a novel heuristic to find approximate solutions for the case of the TSP with Euclidean metric. Our pair-center algorithm runs in quasi-linear time and on linear space. In practical experiments on a variety of well known benchmarks the algorithm shows linearithmic (i.e., <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>) runtime. The solutions found by the pair-center algorithm are very good on smaller problem instances, and better than those generated by any other heuristic with at most quadratic runtime. Eventually, the average gap of the pair-center algorithm on all benchmark instances with less than 1<!--> <!-->001 points is 0.94% and for all instances with more than 1000 points up to 100 million points is 4.57%.</p></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"82 \",\"pages\":\"Article 102424\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877750324002175/pdfft?md5=f01dfeaca300fe86a8ddf250d2d1414b&pid=1-s2.0-S1877750324002175-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750324002175\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002175","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quasi-linear time heuristic to solve the Euclidean traveling salesman problem with low gap
The traveling salesman problem (TSP) is a well studied NP-hard optimization problem. We present a novel heuristic to find approximate solutions for the case of the TSP with Euclidean metric. Our pair-center algorithm runs in quasi-linear time and on linear space. In practical experiments on a variety of well known benchmarks the algorithm shows linearithmic (i.e., ) runtime. The solutions found by the pair-center algorithm are very good on smaller problem instances, and better than those generated by any other heuristic with at most quadratic runtime. Eventually, the average gap of the pair-center algorithm on all benchmark instances with less than 1 001 points is 0.94% and for all instances with more than 1000 points up to 100 million points is 4.57%.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).