{"title":"SDSS星系双谱的大小和形状依赖性","authors":"Anindita Nandi , Sukhdeep Singh Gill , Debanjan Sarkar , Abinash Kumar Shaw , Biswajit Pandey , Somnath Bharadwaj","doi":"10.1016/j.newast.2024.102292","DOIUrl":null,"url":null,"abstract":"<div><p>We have measured the spherically averaged bispectrum of the SDSS main galaxy sample, considering a volume-limited <span><math><msup><mrow><mrow><mo>[</mo><mn>296</mn><mo>.</mo><mn>75</mn><mspace></mspace><mi>Mpc</mi><mo>]</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> data cube with mean galaxy number density <span><math><mrow><mn>0</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace><msup><mrow><mi>Mpc</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> and median redshift <span><math><mrow><mn>0</mn><mo>.</mo><mn>102</mn></mrow></math></span>. Our analysis considers <span><math><mrow><mo>∼</mo><mn>1</mn><mo>.</mo><mn>37</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> triangles, for which we have measured the binned bispectrum and analysed its dependence on the size and shape of the triangle. It spans wavenumbers <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>075</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>434</mn><mo>)</mo></mrow><mspace></mspace><msup><mrow><mi>Mpc</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for equilateral triangles, and a smaller range of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (the largest side) for triangles of other shapes. For all shapes, we find that the measured bispectrum is well modelled by a power law <span><math><mrow><mi>A</mi><mspace></mspace><msup><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><mn>1</mn><mspace></mspace><msup><mrow><mi>Mpc</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, where the best-fit values of <span><math><mi>A</mi></math></span> and <span><math><mi>n</mi></math></span> vary with the shape. The parameter <span><math><mi>A</mi></math></span> is the minimum for equilateral triangles and increases as the shape is deformed to linear triangles where the two largest sides are nearly aligned, reaching its maximum value for <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>95</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></math></span>. The values of <span><math><mi>n</mi></math></span> are all negative, <span><math><mrow><mo>|</mo><mi>n</mi><mo>|</mo></mrow></math></span> is minimum <span><math><mrow><mo>(</mo><mn>3</mn><mo>.</mo><mn>12</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>35</mn><mo>)</mo></mrow></math></span> for the shape bin <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>65</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></math></span>, and <span><math><mrow><mn>3</mn><mo>.</mo><mn>8</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>28</mn></mrow></math></span> for <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>65</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>85</mn></mrow></math></span>. We have also analysed mock galaxy samples constructed from <span><math><mi>Λ</mi></math></span>CDM N-body simulations by applying a simple Eulerian bias prescription where the galaxies reside in regions where the smoothed density field exceeds a threshold. We find that the bispectrum from the mock samples with bias <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn></mrow></math></span> is in good agreement with the SDSS results. We further divided our galaxy sample into red and blue classes and studied the nature of the bispectrum for each category. The red galaxies exhibit higher bispectrum amplitude <span><math><mi>A</mi></math></span> than the blue galaxies for all possible triangle configurations. Red galaxies are old, and their larger bispectra indicate non-linear evolutionary interactions within their environments over time, resulting in their distribution being highly clustered and more biased than younger blue galaxies.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"113 ","pages":"Article 102292"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The size and shape dependence of the SDSS galaxy bispectrum\",\"authors\":\"Anindita Nandi , Sukhdeep Singh Gill , Debanjan Sarkar , Abinash Kumar Shaw , Biswajit Pandey , Somnath Bharadwaj\",\"doi\":\"10.1016/j.newast.2024.102292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have measured the spherically averaged bispectrum of the SDSS main galaxy sample, considering a volume-limited <span><math><msup><mrow><mrow><mo>[</mo><mn>296</mn><mo>.</mo><mn>75</mn><mspace></mspace><mi>Mpc</mi><mo>]</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> data cube with mean galaxy number density <span><math><mrow><mn>0</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace><msup><mrow><mi>Mpc</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> and median redshift <span><math><mrow><mn>0</mn><mo>.</mo><mn>102</mn></mrow></math></span>. Our analysis considers <span><math><mrow><mo>∼</mo><mn>1</mn><mo>.</mo><mn>37</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> triangles, for which we have measured the binned bispectrum and analysed its dependence on the size and shape of the triangle. It spans wavenumbers <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>075</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>434</mn><mo>)</mo></mrow><mspace></mspace><msup><mrow><mi>Mpc</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for equilateral triangles, and a smaller range of <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (the largest side) for triangles of other shapes. For all shapes, we find that the measured bispectrum is well modelled by a power law <span><math><mrow><mi>A</mi><mspace></mspace><msup><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><mn>1</mn><mspace></mspace><msup><mrow><mi>Mpc</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, where the best-fit values of <span><math><mi>A</mi></math></span> and <span><math><mi>n</mi></math></span> vary with the shape. The parameter <span><math><mi>A</mi></math></span> is the minimum for equilateral triangles and increases as the shape is deformed to linear triangles where the two largest sides are nearly aligned, reaching its maximum value for <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>95</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></math></span>. The values of <span><math><mi>n</mi></math></span> are all negative, <span><math><mrow><mo>|</mo><mi>n</mi><mo>|</mo></mrow></math></span> is minimum <span><math><mrow><mo>(</mo><mn>3</mn><mo>.</mo><mn>12</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>35</mn><mo>)</mo></mrow></math></span> for the shape bin <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>65</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></math></span>, and <span><math><mrow><mn>3</mn><mo>.</mo><mn>8</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>28</mn></mrow></math></span> for <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>65</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>85</mn></mrow></math></span>. We have also analysed mock galaxy samples constructed from <span><math><mi>Λ</mi></math></span>CDM N-body simulations by applying a simple Eulerian bias prescription where the galaxies reside in regions where the smoothed density field exceeds a threshold. We find that the bispectrum from the mock samples with bias <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn></mrow></math></span> is in good agreement with the SDSS results. We further divided our galaxy sample into red and blue classes and studied the nature of the bispectrum for each category. The red galaxies exhibit higher bispectrum amplitude <span><math><mi>A</mi></math></span> than the blue galaxies for all possible triangle configurations. Red galaxies are old, and their larger bispectra indicate non-linear evolutionary interactions within their environments over time, resulting in their distribution being highly clustered and more biased than younger blue galaxies.</p></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"113 \",\"pages\":\"Article 102292\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624001064\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624001064","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们测量了SDSS主星系样本的球形平均双谱,考虑了一个体积有限的[296.75Mpc]3数据立方体,其平均星系数密度为0.63×10-3Mpc-3,中位红移为0.102。我们的分析考虑了 ∼1.37×108 个三角形,测量了这些三角形的二分双谱,并分析了它与三角形大小和形状的关系。对于等边三角形,它的波数范围是 k1=(0.075-0.434)Mpc-1 ,对于其他形状的三角形,k1(最大边)的范围较小。我们发现,对于所有形状,测量到的双光谱都可以很好地用幂律 A(k1/1Mpc-1)n 来模拟,其中 A 和 n 的最佳拟合值随形状的变化而变化。参数 A 在等边三角形时最小,随着形状变形为最大两边几乎对齐的线性三角形而增大,在 μ=0.95,t=0.75 时达到最大值。n的值都是负数,μ=0.65,t=0.75时,n的值最小(3.12±0.35),μ=0.65,t=0.85时,n的值为3.8±0.28。我们还分析了根据ΛCDM N-body模拟构建的模拟星系样本,方法是应用一个简单的欧拉偏差处方,即星系位于平滑密度场超过阈值的区域。我们发现,在偏差 b1=1.2 的条件下,模拟样本的双谱与 SDSS 的结果非常吻合。我们进一步将星系样本分为红色和蓝色两类,并研究了每一类星系的双谱性质。在所有可能的三角形配置中,红色星系的双谱振幅A都高于蓝色星系。红色星系年代久远,它们的双光谱较大,这表明随着时间的推移,它们所处的环境发生了非线性的演化相互作用,导致它们的分布高度集群,比年轻的蓝色星系更有偏差。
The size and shape dependence of the SDSS galaxy bispectrum
We have measured the spherically averaged bispectrum of the SDSS main galaxy sample, considering a volume-limited data cube with mean galaxy number density and median redshift . Our analysis considers triangles, for which we have measured the binned bispectrum and analysed its dependence on the size and shape of the triangle. It spans wavenumbers for equilateral triangles, and a smaller range of (the largest side) for triangles of other shapes. For all shapes, we find that the measured bispectrum is well modelled by a power law , where the best-fit values of and vary with the shape. The parameter is the minimum for equilateral triangles and increases as the shape is deformed to linear triangles where the two largest sides are nearly aligned, reaching its maximum value for . The values of are all negative, is minimum for the shape bin , and for . We have also analysed mock galaxy samples constructed from CDM N-body simulations by applying a simple Eulerian bias prescription where the galaxies reside in regions where the smoothed density field exceeds a threshold. We find that the bispectrum from the mock samples with bias is in good agreement with the SDSS results. We further divided our galaxy sample into red and blue classes and studied the nature of the bispectrum for each category. The red galaxies exhibit higher bispectrum amplitude than the blue galaxies for all possible triangle configurations. Red galaxies are old, and their larger bispectra indicate non-linear evolutionary interactions within their environments over time, resulting in their distribution being highly clustered and more biased than younger blue galaxies.
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.