{"title":"通过密码子的使用来识别循环代码。","authors":"Christian J. Michel","doi":"10.1016/j.biosystems.2024.105308","DOIUrl":null,"url":null,"abstract":"<div><p>Since 1996, circular codes in genes have been identified thanks to the development of 6 statistical approaches: trinucleotide frequencies per frame (Arquès and Michel, 1996), correlation functions per frame (Arquès and Michel, 1997), frame permuted trinucleotide frequencies (Frey and Michel, 2003, 2006), advanced statistical functions at the gene population level (Michel, 2015) and at the gene level (Michel, 2017). All these 3-frame statistical methods analyse the trinucleotide information in the 3 frames of genes: the reading frame and the 2 shifted frames. Notably, codon usage does not allow for the identification of circular codes (Michel, 2020). This has been a long-standing problem since 1996, hindering biologists’ access to circular code theory.</p><p>By considering circular code conditions resulting from code theory, particularly the concept of permutation class, and building upon previous statistical work, a new statistical approach based solely on the codon usage, i.e. a 1-frame statistical method, surprisingly reveals the maximal <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> self-complementary trinucleotide circular code <span><math><mi>X</mi></math></span> in bacterial genes and in average (bacterial, archaeal, eukaryotic) genes, and almost in archaeal genes. Additionally, a new parameter definition indicates that bacterial and archaeal genes exhibit codon usage dispersion of the same order of magnitude, but significantly higher than that observed in eukaryotic genes. This statistical finding may explain the greater variability of codes in eukaryotic genes compared to bacterial and archaeal genes, an issue that has been open for many years. Finally, biologists can now search for new (variant) circular codes at both the genome level (across all genes in a given genome) and the gene level using only codon usage, without the need for analysing the shifted frames.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"244 ","pages":"Article 105308"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular code identified by the codon usage\",\"authors\":\"Christian J. Michel\",\"doi\":\"10.1016/j.biosystems.2024.105308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since 1996, circular codes in genes have been identified thanks to the development of 6 statistical approaches: trinucleotide frequencies per frame (Arquès and Michel, 1996), correlation functions per frame (Arquès and Michel, 1997), frame permuted trinucleotide frequencies (Frey and Michel, 2003, 2006), advanced statistical functions at the gene population level (Michel, 2015) and at the gene level (Michel, 2017). All these 3-frame statistical methods analyse the trinucleotide information in the 3 frames of genes: the reading frame and the 2 shifted frames. Notably, codon usage does not allow for the identification of circular codes (Michel, 2020). This has been a long-standing problem since 1996, hindering biologists’ access to circular code theory.</p><p>By considering circular code conditions resulting from code theory, particularly the concept of permutation class, and building upon previous statistical work, a new statistical approach based solely on the codon usage, i.e. a 1-frame statistical method, surprisingly reveals the maximal <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> self-complementary trinucleotide circular code <span><math><mi>X</mi></math></span> in bacterial genes and in average (bacterial, archaeal, eukaryotic) genes, and almost in archaeal genes. Additionally, a new parameter definition indicates that bacterial and archaeal genes exhibit codon usage dispersion of the same order of magnitude, but significantly higher than that observed in eukaryotic genes. This statistical finding may explain the greater variability of codes in eukaryotic genes compared to bacterial and archaeal genes, an issue that has been open for many years. Finally, biologists can now search for new (variant) circular codes at both the genome level (across all genes in a given genome) and the gene level using only codon usage, without the need for analysing the shifted frames.</p></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"244 \",\"pages\":\"Article 105308\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030326472400193X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030326472400193X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Since 1996, circular codes in genes have been identified thanks to the development of 6 statistical approaches: trinucleotide frequencies per frame (Arquès and Michel, 1996), correlation functions per frame (Arquès and Michel, 1997), frame permuted trinucleotide frequencies (Frey and Michel, 2003, 2006), advanced statistical functions at the gene population level (Michel, 2015) and at the gene level (Michel, 2017). All these 3-frame statistical methods analyse the trinucleotide information in the 3 frames of genes: the reading frame and the 2 shifted frames. Notably, codon usage does not allow for the identification of circular codes (Michel, 2020). This has been a long-standing problem since 1996, hindering biologists’ access to circular code theory.
By considering circular code conditions resulting from code theory, particularly the concept of permutation class, and building upon previous statistical work, a new statistical approach based solely on the codon usage, i.e. a 1-frame statistical method, surprisingly reveals the maximal self-complementary trinucleotide circular code in bacterial genes and in average (bacterial, archaeal, eukaryotic) genes, and almost in archaeal genes. Additionally, a new parameter definition indicates that bacterial and archaeal genes exhibit codon usage dispersion of the same order of magnitude, but significantly higher than that observed in eukaryotic genes. This statistical finding may explain the greater variability of codes in eukaryotic genes compared to bacterial and archaeal genes, an issue that has been open for many years. Finally, biologists can now search for new (variant) circular codes at both the genome level (across all genes in a given genome) and the gene level using only codon usage, without the need for analysing the shifted frames.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.