{"title":"SGLT2 抑制剂:它们对心脏细胞有何影响?","authors":"Betul Rabia Erdogan, Ebru Arioglu-Inan","doi":"10.1007/s11010-024-05084-z","DOIUrl":null,"url":null,"abstract":"<p><p>The first sodium-glucose cotransporter-2 inhibitor (SGLT2I), canagliflozin, was approved by the U.S. Food and Drug Administration for the treatment of type 2 diabetes in 2013. Since then, other members of this drug class (such as dapagliflozin, empagliflozin, and ertugliflozin) have become widely used. Unlike classical antidiabetic agents, these drugs do not interfere with insulin secretion or action, but instead promote renal glucose excretion. Since their approval, many preclinical and clinical studies have been conducted to investigate the diverse effects of SGLT2Is. While originally introduced as antidiabetic agents, the SGLT2Is are now recognized as pillars in the treatment of heart failure and chronic kidney disease, in patients with or without diabetes. The beneficial cardiac effects of this class have been attributed to several mechanisms. Among these, SGLT2Is inhibit fibrosis, hypertrophy, apoptosis, inflammation, and oxidative stress. They regulate mitochondrial function and ion transport, and stimulate autophagy through several underlying mechanisms. This review details the potential effects of SGLT2Is on cardiac cells.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"1359-1379"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SGLT2 inhibitors: how do they affect the cardiac cells.\",\"authors\":\"Betul Rabia Erdogan, Ebru Arioglu-Inan\",\"doi\":\"10.1007/s11010-024-05084-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The first sodium-glucose cotransporter-2 inhibitor (SGLT2I), canagliflozin, was approved by the U.S. Food and Drug Administration for the treatment of type 2 diabetes in 2013. Since then, other members of this drug class (such as dapagliflozin, empagliflozin, and ertugliflozin) have become widely used. Unlike classical antidiabetic agents, these drugs do not interfere with insulin secretion or action, but instead promote renal glucose excretion. Since their approval, many preclinical and clinical studies have been conducted to investigate the diverse effects of SGLT2Is. While originally introduced as antidiabetic agents, the SGLT2Is are now recognized as pillars in the treatment of heart failure and chronic kidney disease, in patients with or without diabetes. The beneficial cardiac effects of this class have been attributed to several mechanisms. Among these, SGLT2Is inhibit fibrosis, hypertrophy, apoptosis, inflammation, and oxidative stress. They regulate mitochondrial function and ion transport, and stimulate autophagy through several underlying mechanisms. This review details the potential effects of SGLT2Is on cardiac cells.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"1359-1379\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05084-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05084-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SGLT2 inhibitors: how do they affect the cardiac cells.
The first sodium-glucose cotransporter-2 inhibitor (SGLT2I), canagliflozin, was approved by the U.S. Food and Drug Administration for the treatment of type 2 diabetes in 2013. Since then, other members of this drug class (such as dapagliflozin, empagliflozin, and ertugliflozin) have become widely used. Unlike classical antidiabetic agents, these drugs do not interfere with insulin secretion or action, but instead promote renal glucose excretion. Since their approval, many preclinical and clinical studies have been conducted to investigate the diverse effects of SGLT2Is. While originally introduced as antidiabetic agents, the SGLT2Is are now recognized as pillars in the treatment of heart failure and chronic kidney disease, in patients with or without diabetes. The beneficial cardiac effects of this class have been attributed to several mechanisms. Among these, SGLT2Is inhibit fibrosis, hypertrophy, apoptosis, inflammation, and oxidative stress. They regulate mitochondrial function and ion transport, and stimulate autophagy through several underlying mechanisms. This review details the potential effects of SGLT2Is on cardiac cells.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.